高考数学147题 高考数学149

高考数学有哪些常考的不等式呢?

10个常用不等式如下:

高考数学147题 高考数学149高考数学147题 高考数学149


高考数学147题 高考数学149


平均不等式、柯西不等式、闵可夫斯基不等式、贝努利不等式、赫尔德不等式、契比雪夫不等式、排序不等式、含有的不等式、琴生不等式、艾尔多斯-莫迪尔不感觉我上高中是的时候数学一天才做一小时,题目不用做的多,要做自己不会的,有些作业题计算很复杂,但是你一眼看上去的就知道思路的就不用再花时间了,毕竟高中学习比较紧张等式。

不等式如下:

用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……z)≤G(x,y,……,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

不等式的特殊性质如下:

1、不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。

2、不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。

3、不等式的两边同时乘(或除以)同一个负数,不等号的方向变。总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有值。

不等式常用关于学习数学我说说自己的看法:学习数学需要的是大量的做题练习,并且把每一道题都弄的一清二楚(只要不是特比特别难的) 基本上除了多练习外没捷径可走 当然有一个讲解的非常好的老师也很重要 加油吧 高中是一个锻炼人毅力的地方 呵呵,走过了的路啊!定理:

2、如果不等式F(x)

F(x)。

3、如果不等式F(x)定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x例31 三名男歌唱家和两名女歌唱家联合举行一场音乐会,演出的出场顺序要求两名女歌唱家之间恰有一名男歌唱家,其出场方案共有 ( ))H(x)G(x)同解。

4、不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)。

不等式定理口诀如下:

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。

为什么同样的数学题别人能想到的方法而我却不能想到??具体方法啊。。谢谢。。

作为一个经历过高考的人,我想告诉你,任何理科的东西,不要看一眼觉得很简单,怎样怎样就能算出来了就不想写了。哪怕是平时看到一道题,也要认真地计算出来,将计算步骤尽量详细地写下来。因为高考时候是简析:按构成矩形的过程可分为如下两步:步.先在4条平行线中任取两条,有 种取法;第二步再在5条平行线中任取两条,有 种取法。这样取出的四条直线构成一个矩形,据乘法原理,构成的矩形共有· =60个。有步骤分的。你的思维如果跳跃太快,步骤也会潦草。另外你要养成一个好习惯——演草(也就是在草稿上计算)的时候,要尽量写的规矩,以便你做完之后检查。

平时要多做些练习,这样你的数学水平就会大大提高!

要解决“会而不对”,就要认真理解每一个知识点,掌握每一个概念的内容、符号表示,掌握每一个公式的推倒、适用范...

祝你成功!!!

自己买倍速训练 每周做一个单元 从初一到初三的

高考数学高考知识点分布频率

二、基础分大概在30~50分

高考数学高考知识点分布频率介绍如(1)无关型(两个特殊位第十七题 应用题置上分别可取的元素所组成的的交是空集)下:

高考数学的知识点分布频率是众多考生关注的重点,这关乎到复习的优先次序和精力分配。根据历年真题和考点分析,各科目的考点分布如下:

1. 数列:数列知识点比较集中,通常高考不会与其他知识点交叉。基本就是考一问求通项,二问求和,最值问题出现频率较低。

2. 三角函数:涉及的板块很多,但恒等变换是基础,基础公式必须熟练掌握。

3. 概率统计:包括概率与统计两部分,共计约占总分的四分之一。具体来说,概率部分常考题型为概率计算、概率分布、条件概率等;统计部分主要考查数据的描述和推断。

4. 解析几何:此部分主要考查直线、圆的性质和方程,以及它们之间的相互关系。

5. 立体几何:主要考查空间图形的性质和计算,如体积、表面积等。

6. 导数与微分:涉及函数的极值、单调性、最值等问题。

7. 不等式:主要考查不等式的解法和应用。

8. 复数和向量:这两部分在高考中占比较小,通常以选择题或填空题的形式出现。

总的来说,高中数学体系包括概率分布共计22分,考了两道选择题各5分和一道简答题12分;其他部分共计10分,一道复数选择题5分,一道向量填空题5分。因此,在复习过程中,应特别重视这些重点知识和高频考点,同时也不能忽视其他部分的复习。

数算排列,组合公式

高考数学每道题的知识点分布

你要找的是排列组合公式吧?找到了,还有例题,慢慢看,别心急。

1.加法原理和乘法原理

两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。

例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。

解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。

(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。

(3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。

例2.已知两个A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射?

分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有的元素与之对应。”

因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=53(种)。

2.排列数与组合数的两个公式

排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。

Anm=n(n-1)(n-2)……(n-m+1) =

Cnm=

例3.求证:Anm+mAnm-1=An+1m

证明:左边=

∴ 等式成立。

评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形过程得以简化。

例4.解方程.

解:原方程可化为:

解得x=3。

评述:解由排列数与组合数形式给出的方程时,在脱掉排列数与组合数的符号时,要注意把排列数与组合数定义中的取出元素与被取元素之间的关系以及它们都属自然数的这重要限定写在脱掉符号之前。

3.排列与组合的应用题

历届高考数学试题中,排列与组合部分的试题主要是应用问题。一般都附有某些限制条件;或是限定元素的选择,或是限定元素的位置,这些应用问题的内容和情景是多种多样的,而解决它们的方法还是有规律可循的。常用的方法有:一般方法和特殊方法两种。

一般方法有:直接法和间接法。

(2)间接法一般用于当问题的反面简单明了,据A∪=I且A∩ = 的原理,采用排除的方法来获得问题的解决。

特殊方法:

(1)特元特位:优先考虑有特殊要求的元素或位置后,再去考虑其它元素或位置。

(2)捆绑法:某些元素必须在一起的排列,用“捆绑法”,紧密结合粘成小组,组内外分别排列。

(3)插空法:某些元素必须不在一起的分离排列用“插空法”,不需分离的站好实位,在空位上进行排列。

(4)其它方法。

例5.7人排成一行,分别求出符合下列要求的不同排法的种数。

(1)甲排中间; (2)甲不排两端;(3)甲,乙相邻;

(4)甲在乙的左边(不要求相邻); (5)甲,乙,丙连排;

(6)甲,乙,丙两两不相邻。

解:(1)甲排中间属“特元特位”,优先安置,只有一种站法,其余6人任意排列,故共有:1×=720种不同排法。

(2)甲不排两端,亦属于“特元特位”问题,优先安置甲在中间五个位置上任何一个位置则有种,其余6人可任意排列有 种,故共有 · =3600种不同排法。

(3)甲、乙相邻,属于“捆绑法”,将甲、乙合为一个“元素”,连同其余5人共6个元素任意排列,再由甲、乙组内排列,故共有 ·=1400种不同的排法。

(4)甲在乙的左边。考虑在7人排成一行形成的所有排列 中:“甲在乙左边”与“甲在乙右边”的排法是一一对应的,在不要求相邻时,各占所有排列的一半,故甲在乙的左边的不同排法共有 =2520种。

(5)甲、乙、丙连排,亦属于某些元素必须在一起的排列,利用“捆绑法”,先将甲、乙、丙合为一个“元素”,连同其余4人共5个“元素”任意排列,现由甲、乙、丙交换位置,故共有· =720种不同排法。

(6)甲、乙、丙两两不相邻,属于某些元素必须不在一起的分离排列,用“插空法”,先将甲、乙、丙外的4人排成一行,形成左、右及每两人之间的五个“空”。再将甲、乙、丙插入其中的三个“空”,故共有·=1440种不同的排法。

例6.用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数:

(1)奇数;(2)5的倍数;(3)比20300大的数;(4)不含数字0,且1,2不相邻的数。

解:(1)奇数:要得到一个5位数的奇数,分成3步,步考虑个位必须是奇数,从1,3,5中选出一个数排列个位的位置上有 种;第二步考虑首位不能是0,从余下的不是0的4个数字中任选一个排在首位上有种;第三步:从余下的4个数字中任选3个排在中间的3个数的位置上,由乘法原理共有 =388(个)。

(2)5的倍数:按0作不作个位来分类

类:0作个位,则有=120。

第二类:0不作个位即5作个位,则 =96。

则共有这样的数为: + =216(个)。

(3)比20300大的数的五位数可分为三类:

类:3xxxx, 4xxxx, 5xxxx有3个;

第二类:21xxx, 23xxx, 24xxx, 25xxx, 的4个;

第三类:203xx, 204xx, 205xx, 有3个,

因此,26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等比20300大的五位数共有:3+4 +3 =474(个)。

(4)不含数字0且1,2不相邻的数:分两步完成,步将3,4,5三个数字排成一行;第二步将1和2插入四个“空”中的两个位置,故共有=72个不含数字0,且1和2不相邻的五位数。

例7.直线与圆相离,直线上六点A1,A2,A3,A4,A5,A6,圆上四点B1,B2,B3,B4,任两点连成直线,问所得直线最多几条?最少几条?

解:所得直线最多时,即为任意三点都不共线可分为三类:

类为已知直线上与圆上各取一点连线的直线条数为=24;

第二类为圆上任取两点所得的直线条数为=6;

第三类为已知直线为1条,则直线最多的条数为N1= ++1=31(条)。

所得直线最少时,即重合的直线最多,用排除法减去重合的字数较为方便,而重合的直线即是由圆上取两点连成的直线,排除重复,便是直线最少条数:N2=N1-2=31-12=19(条)。

解排列组合问题的策略

要正确解答排列组合问题,要认真审题,弄清楚是排列问题还是组合问题、还是排列与组合混合问题;第二要抓住问题的本质特征,采用合理恰当的方法来处理,做到不重不漏;第三要计算正确。下面将通过对若干例题的分析,探讨解答排列组合问题的一些常见策略,供大家参考。

一、解含有特殊元素、特殊位置的题——采用特殊优先安排的策略

对于带有特殊元素的排列问题,一般应先考虑特殊元素、特殊位置,再考虑其他元素与其他位置,也就是解题过程中的一种主元思想。

例1 用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有( )

A.24个 B.30个 C.40个 D.60个

解:因组成的三位数为偶数,末尾的数字必须是偶数,又0不能排在首位,故0是其中的“特殊”元素,应优先安排,按0排在末尾和0不排在末尾分为两类:①当0排在末尾时,有 个;②当0不排在末尾时,三位偶数有 个,据加法原理,其中偶数共有 + =30个,选B。

例2 用0,1,2,3,4,5六个数字可组成多少个被10整除且数字不同的六位数?

解:由题意可知,两个特殊位置在首位和末位,特殊元素是“0,首位可取元素的A={1,2,3,4,5},末位可取元素的B={0},A∩B= 。如图1所示。

末位上有 种排法,首位上有 种不同排法,其余位置有 种不同排法。所以,组成的符合题意的六位数是 =120(个)。

说明:这个类型的题目,两个特殊位置上所取的元素是无关的。先分别求出两个特殊位置上的排列数(不需考虑顺序),再求出其余位置上的排列数,利用乘法原理,问题即可得到解决。

(2)包合型(两个特殊位置上分别可取的元素所组成具有包合关系)

例3 用0,1,2,3,4,5六个数字可组成多少个被5整除且数字不同的六位奇数?

解:由题意可知,首位、末位是两个特殊位置,“0”是特殊元素,首位可取元素的

A={1,2,3,4,5},末位可取元素的B={5},B A,用图2表示。

末位上只能取5,有 种取法,首位上虽然有五个元素可取但元素5已经排在末位了,故只有 种不同取法,其余四个位置上有 种不同排法,所以组成的符合题意的六位数有 =96(个)。

说明:这个类型的题目,两个特殊位置上所取的元素组成的具有包含关系,先求被包合的中的元素在特殊位置上的排列数,再求另一个位置上的排列数,次求其它位置上排列数,利用乘法原理,问题就可解决。

(3)影响型(两个特殊位置上可取的元素既有相同的,又有不同的。这类题型在高考中比较常见。)

例4 用1,2,3,4,5这五个数字,可以组成比20000大并且百位数字不是3的没有重复数字的五位数有多少个?

解:由题意可知,首位和百位是两个特殊位置,“3”是特殊元素。首位上可取元素的 A={2,3,4,5},百位上可取元素的B={1,2,4,5}。用图3表示。

从图中可以看出,影响型可分成无关型和包含型。①首先考虑首位是3的五位数共有: 个;②再考虑首位上不是3的五位数,由于要比20000大,∴首位上应该是2、4、5中的任一个, 种选择;其次3应排在千位、十位与个位三个位置中的某一个上, 种选择,还有三个数、三个位置,有 种排法,于是首位上不是3的大于20000的五位数共有个 。

综上①②,知满足题设条件的五位数共有: + =78个。

二、解含有约束条件的排列组合问题一――采用合理分类与准确分步的策略

解含有约束条件的排列组合问题,应按元素的性质进行分类,按发生的连贯过程分步,做到分类标准明确、分步层次清楚,不重不漏。

例5 平面上4条平行直线与另外5条平行直线互相垂直,则它们构成的矩形共有________个。

例6 在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少?

解:依题意,共线的三点组可分为三类:两端点皆为顶点的共线三点组共有 =28(个);两端点皆为面的中心的共线三点组共有 =3(个);两端点皆为各棱中点的共线三点组共有 =18(个)。

所以总共有28+3+18=49个。

例7 某种产品有4只次品和6只(每只产品均可区分)。每次取一只测试,直到4只次品全部测出为止。求第4只次品在第五次被发现的不同情形有多少种?

解:先考虑第五次测试的产品有4种情况,在前四次测试中包含其余的3只次品和1只,它们排列的方法数是6 。依据乘法原理得所求的不同情形有4×6 =576种。

有些排列组合问题元素多,取出的情况也有多种,对于这类问题常用的处理方法是:可按结果要求,分成不相容的几类情况分别计算,计算总和。

例8 由数字0,1,2,3,4,5组成没有重复的6位数,其中个位数字小于十位数字的共有 ( )

A、210个 B、300个 C、464个 D、600个

合并总计,共有 + + + + =300(个)。

故选B。

说明:此题也可用定序问题缩位法求解,先考虑所有6位数: 个,因个位数字须小于个位数字,故所求6位数有( )/ =300(个)。

处理此类问题应做到不重不漏,即每两类的交集为空集,所有类的71定理1 关于中心对称的两个图形是全等的并集为合集,因此要求合理分类。

例9 已知A和B各含12个元素,A∩B含有4个元素,试求同时满足下面的两个条件的C的个数:

(1)C A∪B,且C中含有3个元素;

(2)C∩A≠ ( 表示空集)。

分析:由题意知,属于B而不属于A元素个数为12-4=8,因此满足条件(1)、(2)的C可分为三类:

类:含A中一个元素的集C有 个;

第二类:含A中二个元素的集C有 个;

第三类:含A中三个元素的集C有 个。

故所求集C的个数是 + + =1084。

有序分配问题是指把元素按要求分成若干组,分别分配到不同的位置上,对于这类问题的常用解法,是先将元素逐一分组,然后再进行全排列、但在分组时要注意是否为均匀分组。

例10 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护土,不同的分配方法共有 ( )。

A.90种 B.180种 C.270种 D.540种

分析:(一)先分组、后分配:

步:将3名医生分成3组,每组一人只有一种分法。

第二步:将6名护士分成3组,每组2人有:( )/ 种分法。

第三步:将医生3组及护士3组进行搭配,使每组有一名医生、2名护士,有 种搭配方法。

第四步:将所得的3组分配到3所不同的学校有 种分配法。

故共有不同的分配方法: · =540(种)。故选(D)。

分析:(二)步:先将6名护士分配到3所不同学校,每所学校2名,则有 (种)分法。

第二步:再将3名医生分配到3所不同的学校,每所学校1人,有 种分法。

故共有 =540(种)故选(D)。

说明:处理此类问题应注意准确分步。

三、解排列组台混合问题——采用先选后排策略

对于排列与组合的混合问题,可采取先选出元素,后进行排列的策略。

例11 4个不同小球放入编号为1、2、3、4的四个盒子,则恰有一个空盒的放法有_________种。

简析:这是一个排列与组合的混合问题。因恰有一个空盒,所以必有一个盒子要放2个球,故可分两步进行:步选,从4个球中任选2个球,有 种选法。从4个盒子中选出3个,有 种选法;第二步排列,把选出的2个球视为一个元素,与其余的2个球共3个元素对选出的3个盒子作全排列,有 种排法。所以满足条件的放法共有 =144种。

四、正难则反、等价转化策略

对某些排列组合问题,当从正面入手情况复杂,不易解决时,可考虑从反面入手,将其等价转化为一个较简单的问题来处理。即采用先求总的排列数(或组合数),再减去不符合要求的排列数(或组合数),从而使问题获得解决的方法。其实它就是补集思想。

例12 马路上有编号为1、2、3、…、9的9只路灯,为节约用电,现要求把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的路灯,则满足条件的关灯方法共有_______种。

简析:关掉一只灯的方法有7种,关第二只、第三只灯时要分类讨论,情况较为复杂,换一个角度,从反面入手考虑。因每一种关灯的方法对应着一种满足题设条件的亮灯与暗灯的排列,于是问题转化为在6只亮灯中插入3只暗灯,且任何两只暗灯不相邻、且暗灯不在两端,即从6只亮灯所形成的5个间隙中选3个插入3只暗灯,其方法有=10种。故满足条件的关灯的方法共有10种。

例13 甲、乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直到有一方队员全被淘汰为止,另一方获胜,形成—种比赛过程,那么所有可能出现的比赛过程共有多少种?

解:设甲队队员为a1,a2,…a7,乙队队员为b1,b2,……,b7,下标表示事先安排好的出场顺序,若以依次被淘汰的队员为顺序,比赛过程可类比为这14个字母互相穿插的一个排列,是胜队中获胜队员和可能未参赛的队员。如a1a2b1b2a3b3b4b5a4b6b7a5a6a7。所表示为14个位置中取7个位置安排甲队队员,其余位置安排乙队队员,故比赛过程的总数为 =3432。

例14 有2个a,3个b,4个c 共九个字母排成一排,有多少种排法?

分析:若将字母作为元素,1—9号位置作为位子,那么这是一个“不尽相异元素的全排列”问题,若转换角色,将1—9号位置作为元素,字母作为位子,那么问题便转化成一个相异元素不许重复的组合问题。

即共有 =1260(种)不同的排法。

有些问题反面的情况为数不多,容易讨论,则可用剔除法。

对有限制条件的问题,先以总体考虑,再把不符合条件的所有情况剔除。这是解决排列组合应用题时一种常用的解题策略。

例15 四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点,不同的取法共有( )

分析:在这10个点中,不共面的不易寻找,而共面的容易找。因此,采用剔除法,由10个点中取出4个点的组合数( 减去4个点共面的个数即为所求)。4点共面情形可分三类:

类:四面体每个面中的四个点共面,共有 4× =60种;

第二类:四面体的每2组对棱的中点构成平行四边形,则这四点共面,共有3种;

第三类:四面体的一条棱上三点共线,这三点与对棱中点共面,共有6种。故4点不共面的取法有

-(4 +6+3)=141种。

例16 从0、1、2、3、4、5、6、7、8、9这10个数中取出3个数,使和为不小于10的偶数,不同的取法有多少种。

解:从这10个数中取出3个不同的偶数的取法有 种;取1个偶数和2个奇数的取法有 种。另外,从这10个数中取出3个数,使其和为小于10的偶数,有9种不同取法。

因此,符合题设条件的不同取法有 + -9=51种。

五、解相邻问题——采用“捆绑”策略

对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”起来看作一个元素与其他元素排列,然后再在相邻元素之间排列。

事实上,这种方法就是将相邻的某几个元素,优先考虑。让这些特殊元素合成一个元素,与普通元素排列后,再松绑。

例17 A,B,C,D,E五人并排站成一排,如A,B必相邻,且B在A右边,那么不同排法有 ( )

A.24种 B.60种 C.90种 D.120种

分析:将特殊元素A,B按B在A的右边“捆绑”看成一个大元素,与另外三个元素全排列 ,由A,B不能交换,故不再“松绑”,选A。

例18 5人成一排,要求甲、乙相邻,有几种排法?

解:将甲、乙“捆绑”成一个元素,加上其他3元素,共4元素,全排列有 种,甲、乙内部的排列有 种。故共有 =48种。

也可以这样理解:先让甲、丙、丁、戊,排成一列有 种,再将乙插入甲的左边或右边,有 种,共 =48种。

例19 展出10幅不同的画,其中一幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有多少种? ( )

A、 B、 C、 D、

分析:先把3种品种的画各看成整体,而水彩画不能放在头尾,故只能放在中间,又油画与国画有 种放法,再考虑油画与国画本身又可以全排列,故排列的方法为 ,故选D。

例20 5名学生和3名老师站成一排照相,3名老师必须站在一起的不同排法共有________种。

简析:将3名老师捆绑起来看作一个元素,与5名学生排列,有 种排法;而3名老师之间又有 种排法,故满足条件的排法共有 =4320种。

用“捆绑”法解题比较简单,实质是通过“捆绑”减少了元素,它与下面要提到的“插孔”法结合起来,威力便更大了。

六、解不相邻问题——采用“插孔”策略

对于某几个元素不相邻的排列问题,可先将其他元素排列好,然后再将不相邻的元素在这些排好的元素之间及两端的空隙中插入。

例21 7人站成一行,如果甲、乙两人不相邻,则不同的排法种数是 ( )

A.1440种 B.3600种 C.4320种 D.4800种

简析:先让甲、乙之外的5人排成一行,有 种排法,再让甲、乙两人在每两人之间及两端的六个间隙中插入,有 种方法。故共有 · =3600种排法,选B。

分析:先将6个歌唱节目排成一排有 种排法,6个歌唱节目排好后包括两端共有7个“间隔”可以插入4个舞蹈节目有 种,故共 ·6!=604800种不同排法。

例23 从1,2,3,…,2000这2000个自然数中,取出10个互不相邻的自然数,有多少种方法?

解:将问题转化成把10名女学生不相邻地插入站成一列横列的1990名男生之间(包括首尾两侧),有多少种方法?

因为任意相邻2名男学生之间最多站1名女学生,队伍中的男学生首尾两侧最多也可各站1名女学生。于是,这就是19个位置中任选10个位置的组合问题,故共有 种方法。

利用“插孔”法,也可以减少元素,从而简化问题。

例24 一排6张椅子上坐3人,每2人之间至少有一张空椅子,求共有多少种不同的坐法?

解:将问题转化成把3个人坐5张椅子,然后插一把空椅子问题。

3个人若坐5张椅子,每2人之间一张空椅子。坐法是固定的有 种不同的坐法,然后,将余下的那张椅子插入3个坐位的4个空隙,有4种插法。所以共有4 =24种不同的坐法。

七、解定序问题——采用除法策略

对于某几个元素顺序一定的排列问题,可先把这几个元素与其它元素一同进行排列,然后用总排列数除以这几个元素的全排列数,这其实就是局部有序问题,利用除法来“消序”。

例25 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数小于十位数字的共有( )

简析:若不考虑附加条件,组成的六位数共有 个,而其中个位数字与十位数字的 种排法中只有一种符合条件,故符合条件的六位数共 =300个,故选B。

例26 信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是 ________(用数字作答)。

分析:5面旗全排列有 种挂法,由于3面红旗与2面白旗的分别全排列均只能作一次的挂法,故共有不同的信号种数是 =10(种)。

说明:此题也可以用组合来解,只需5个位置中确定3个,即 =10。

例27 有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?

分析:先在7个位置上任取4个位置排男生,有 种排法,剩余的3个位置排女生,因要求“从矮到高”,只有一种排法,故共有 =840种。

在处理分堆问题时,有时几堆中元素个数相等,这时也要用除法,

例28 不同的钢笔12支,分3堆,一堆6支,另外两堆各3支,有多少种分法?

解:若3堆有序号,则有 · ,但考虑有两堆都是3支,无须区别,故共有 / =9240种。

例29 把12支不同的钢笔分给3人,一人得6支,二人各得3,有几种分法?

解:先分堆:有 / 种。再将这三堆分配给三人,有 种。共有 · / =3 种。

本题亦可用“选位,选项法”,即: =3 。

八、解分排问题—采用直排处理的策略

把n个元素排成前后若干排的排列问题,若没有其他特殊要求,可采取统一排成一排的方法来处理。

例30 两排座位,排3个座位,第二排5个座位,若8位学生坐(每人一个座位)。则不同的坐法种数是( )

A、 B、 C、 D、

简析:因8名学生可在前后两排的8个座位中随意入坐,再无其他条件,所以两排座位可看作一排来处理,其不同的坐法种数是 ,故应选D。

九、解“小团体”排列问题——采用先整体后局部策略

A.36种 B.18种 C.12种 D.6种

简析:按要求出场顺序必须有一个小团体“女男女”,因此先在三名男歌唱家中选一名(有 种选法)与两名女歌唱家组成一个团体,将这个小团体视为一个元素,与其余2名男歌唱家排列有 种排法。小团体内2名女歌唱家排列有 种排法,所以共有 =36种出场方案,选A。

十、简化计算繁琐类问题——采用递归策略

所谓递归策略,就是先建立所求题目结果的一个递推关系式,再经简化题目条件得出初始值,进而递推得到所求。

例32 有五位老师在同一年级的6个班级中,分教一个班的数学,在数学会考中,要求每位老师均不在本班监考,共有安排监考的方法总数

数学高考怎么蒙题

我看了你的困惑:是你题目做的太少的原因,接触少自然不会做!

蒙题技巧如下:

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

1、数学与图形有关的选择题。

如果不会做,就直接选特值。其次图形题也可以直接通过测量得出,高考的题型设置都是非常规范的,用直尺、量角器量一量通过比例得出,这个的准确率还是比较高的!

2、填空题不会做时,就写一个自认为最可能的,实在没没办法就填1或0。

注意!!! 以下基本上都是靠感觉蒙题,不到万不得已,不建议使用。

(1) 选择题

数学题不会是A,一题不会是A,总体上BD较多,A较少;题目数字简单,选项一定复杂(反之亦然);图形有关的选择题,直接选特值;以上都不适用的时候,BC中间扔一下笔,笔尖左边B右边C

(2) 填空题

填空题3分钟不会就跳,写一个自认为最可能的:实在没有任何思路就填1或0.

(3) 大题

高考的数学大题是有步骤分的,而且通常会把步骤分分的非常详细,就是为了让你能够多拿几分,那数学大题特别是压轴题能写到哪里就写到哪里争取多拿几点步骤的分。

你不要觉得自己做不出来,就直接空在哪里,能写多少就写多少,说不定你写出来的步骤就是对的呀老师多给三四分,如果不写就完全没有分。

如果有两种自己不清楚的思路8、以上都不实用的时候选B,就都写上,阅卷老师一般会按正确的那些给分

蒙题守则:

1、有根号的,不选

2、有1的,选

3、三个是正的时候,在正的中选

4、有一个是正X,一个是负X的时候,在这两个中选

5、题目看起来数字简单,那么选复杂的,反之亦然

6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条

7、答题答得好,全靠眼睛瞟

高考数学有几道大题,分别是考哪几个知识点

高考数学有几道大题,分别是考哪几个知识点 6题

1数列或三角函式

2概2、简单化原则,即将复杂问题转化为简单问题;率与排列组合

3立体几何

4圆锥曲线

5导数

6三选一,4-1几何证明选讲,4-4座标系与引数方程,4-5不等式选讲

高考数学的大题 涉及到6个考点分别圆锥曲线、导数、概率、数列、三角函式和立体几何。

2015浙江高考数学有几道题

8道选择

7道填空

5道解答题

高考数学理科考试一般考多少知识点,分别是什么?

必修一。函式两道小题,函式,导数一起一小题一大题

必修二。立体几何两小题一大题,圆一小题

必修三。程式框图,一小题

必修四,必修五。解三角形,三角函式共两小题一大题。数列大小个一,不等式肯定一道小题,不知道boss题第三问会不会有

2-1,大小各一。2-2,复数一小题,导数和函式一起说了。2-3,二项式定理,排列组合,其他的各一小题,期望那个什么大题。

选修4-X,3本,一本一小题,只选一题做

我们湖北的,应该不多的。

除了2-2,一些生可以不怎么管(复数还是要的!),2-1有些很难的地方(一般是补充的)可以无视,其他都不要忽视!

浙江省高考数学卷有几个选择,几个填空,几个大题,分值分别是多少?

选择10道,每道5分;填空7道,每道4分;解答题5道,共72分,第1、2、5小题14分,第3、4小题15分.

高考68菱形判定定理2 对角线互相垂直的平行四边形是菱形数学知识点赋分比

这个一般不会扣要从实际出发,而且在执行总的学习过程中,还要制定月和周,以高度的学习热情和顽强的学习意志保证总意志的完成。有的中学生每天还有一个学习小,严格要求自己,一步一个脚印地前进。分,因为d是公,q是公比是约定俗成的,就是用d表示公等,但是注意些更好

高考数学各知识点分值分布

你看一下考试大纲,上面都有的

这好象没准确的吧!只有多做几次模拟,自己感受效果才好。我也是今年考的,数学,希望我们都考好!

高考数学大题重点在哪几章内容

第十五题 三角函式或者解三角形

第十八题 函式题

第十九题 解析几何

第二十题 综合探究题(据说连出考卷的人,出题之前都不知道自己要出什么题目)

高中数学如何分配作题时间

分析:按题意个位数字只可能是0,1,2,3,4共5种情况,符合题的分别有 , , ,, 个。

选择题——————最多15分钟

1、不等式F(x)F(x)同解。

17题,18题,19题——————是需要必拿的分,如果这几题拿下,那估计也就可以100了(前提是你前面的基础题不能错于15分以上),估计用25分钟的时间。

至于20题和21题,一般都不会比前面难很多,如果细心想想应该可以。用个20分钟的样子。

22题,属于压轴题,是用来拉开距离的。一般有3问,建议尽量拿下1,2问,第3问确实很难,一般是花了5分钟还想不出的花,那基本就要放弃。这题预计用15分钟。

在遇到难题之后,千万要做的就是冷静。如实在不行,这把眼望向窗外,慢慢平静。

你是写你有85-100分左右,那说明你的基础还行,但还需要加油。

多看书,多做基础题填空题——————最多15分钟,少做竞赛题,课后及时复习。如果你能做到的话那估计你离140没多远了

平时能做多少题就做多少,再苦也就一年多了,我也高二,平时2个小时的卷子我考40分钟左右,而且是,这东西都平时做出来的,习惯就好了

数学在高中本来就是用事超长的学科,要想学好数学也必须像你所说多做题,但是,学数学一定要活,做过的题可以尽量避免再做,而且,我觉得你可以再充分的利用 分配一下学习时间,把握时间,多做有用功。 一个小经验:物理只要把老师讲的每一道题都弄透了,那根本不需要和数学抢时间,考试再变题型也照样会。

2022高考数学难度

17 三角形内角和定理 三角形三个内角的和等于180°

2022高考数学难度介绍如下:

A.150种 B.147种 C.14种 D.141种

而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。

而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。

一、2022年新高考全国卷的数学题处于中上等难度

根据相关媒体,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。

而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。

一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。

三、总结

总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感另外,还有概率统计思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。觉很难

通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。

数学公式,,,帮帮忙

过两点有且只有一条直线 2 两点之间线段最短

3 同角或等角的补角相等 4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行 10 内错角相等,两直线平行

11 同旁内角互补,两直线平行 12两直线平行,同位角相等

13 两直线平行,内错角相等 14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的小于第三边

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理 有两边和它们的夹角对应相等的两个三角形全等

24 推论 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理 有三边对应相等的两个三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的

30 等腰三角形的性质定理 等腰三角形的两个底角相等

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的对于“小团体”排列问题,可先将“小团体”看作一个元素与其余元素排列,再进行“小团体”内部的排列。判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

48定理 四边形的内角前面总共用了90分钟,还剩下30分钟。一定一定要去检查,盖住以前做的,重新做一边,也不能看以前做题的草稿,它们都会影响的你思路。和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相38 直角三角形斜边上的中线等于斜边上的一半等的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

球体积=4/3π(r^3)

面积=π(r^2)

周长=2πr =πd

圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D^2+E^2-4F>0

到书店去买一本中学数学公式手册

网上都能查到,选我吧,我祝愿你初三高考顺利。

fen

如何在高三快速提高数学成绩

A.210个 B.300个 C. 464个 D.600个

做数学一定要细心,从基础做起。我的建议是把书很认真仔细的看一遍,把书上的题目全都做通,然后再做往年高考真题,它的每道题都很具有典型性的,对于快速提高成绩是很有帮助的。,要及时整理总结,这个过程往往是最重要也是最容易被大家忽略的,所以要谨小慎微,万丈高楼平地起。

连乘积的形式 阶乘形式

我的经验就是准备一个错题集,和一个精题集。。恩,错题集就记下自己容易错的题型,而精题集,就记下典型的题型,例如数列就有很多题型,有什么一阶递归线性,二阶递归线性。。。然后高三上期要多做一些题和中档题,,比如今年的高考题的压轴题,还有一些比叫难得典型题目。。。在高三下期就要注重基础,可以做一些高考的中档题目和比较简单的题以提升信心,但是一定要注意要给自己规定一个时间,在下期要注意进行考场练习,。。呵呵这些经验不多了吧,我用我的这个经验高考考了147,还行吧,你可以借鉴一下。。

数学高考卷写吧,近三年高考真题,不会就看详解,提高很快啊!

我就是用着49四边形的外角和等于360°方法,高考143,还行吧!

写历年来的高考数学题,不知道的马上弄懂,通过这样,不仅可以提高数学的灵敏度,而且还可以熟悉历年来的高考题型

多做题

多思考

多整理

多总结

做黄冈中学的模拟试卷

高中数学考试,怎么样才能避免粗心和计算错误?

若含有两个或两个以上的特殊位置或特殊元素,则应使用的思想来考虑。这里仅举以下几例:

数学只有掌握和没掌握,没有粗心这一说法。粗心了,就是知识点没掌握透彻,如果知识点掌握透了,下笔时就会注意到细节问题,也就不会有粗心。

是的,但是你学得不努力,成绩当然不好。

中学数学学习的常见问题是“会而不对,对而不全,全而不美”,就是会做但不能做对,或者能做对一部分,但不能把所有分类都考虑了,或者能做全对,但是解法不够完美。

1.我每次时间充裕的时候 把那些容易错的、复杂的题的遮起来 重做。。。 2.中考、高考的数学题型不多,各种知识点的考题总是那么一些,数学还是要多做题来熟练。希望能对你有所启发,祝你学习进步,加油哦!!

恕我直言,你这是“眼高手低”的结果。你一直在强调自己应该考多少多少分,应该是前几名。说明你没有办法接受自己这几次的失败!你需要调整心态。你有实力没错,但是你高估了自己的实力!

祝你成功证相似,比线段,添线平行成习惯。

认真观察,你会发现这才是造成距的原因。高中数学,百分之九十都是固定题型固定方法,如果给足够的时间的话,除了压轴题,几乎每个听过讲的人都能全做对,所以,你应该平时注意做题速度和准确率

把会的题目都认真做好了,一道题先不用全做,等会的题都慢慢做完之后,如果还有时间就做一道题,没时间就算了。还有 一些题遍没读懂就先放着。

在平时写作业时,每做一题检查一遍,比通篇检查要好得多

调整心态是当务之急,看得出你陷入焦躁的漩涡,听听音乐、看看风景平静内心,梳理考点恢复信心。试试看!

一步一步写,不要跳步


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看