新高考数学数列考查特点_高考数学你真的掌握了吗数列

河北2021年高考数学有什么变化

(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。

2021年新高考河北高考数学变化有删掉高考必考部分内容、难度降低部分、增加部分、题型的新变化四个方面。

新高考数学数列考查特点_高考数学你真的掌握了吗数列新高考数学数列考查特点_高考数学你真的掌握了吗数列


新高考数学数列考查特点_高考数学你真的掌握了吗数列


1、删掉高考必考部分内容

2、难度降低部重点考查三:考生的“历史眼光”“世界格局”“意识”分

这个内容其实是由原来22,23题二选一而来,现强化了三角函数和数列知识点,让这两个知识点都会在大题中出现,这是原来课本中的必修内容,大家的得分机率会更高。

函数与解析几何板块都加强了对性质的考查,注重概念内容的理解提升;

2022年全国新高考1卷数学试题及详解

例如,全国Ⅱ卷数学19题以水产品养殖方法为背景,设计了根据样本数据分析比较新、旧养殖方法生产效益的问题,体现了统计与概率的工具性和应用性以及数学与现实的紧密联系。物理试题设计了冰球运动员训练的情境;化学试题设计了废物综合利用、新物合成以及新能源技术等情境。

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及详解。希望可以帮助大家。

全国新高考1卷数学详解

2022高考数学知识点 总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

①不等式的两边都加上或减去同一个整式,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

考点一:与简易逻辑

部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目.

一、排列

1定高中数列,有规律可循的类型无非就是两者,等数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作(商)→变形→判断符号(值)。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。

1.在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及详解相关 文章 :

★ 2022高考卷数及解析

★ 2022高考甲卷数试卷及

★ 2022卷高考文科数学试题及解析

★ 2022高考全国甲卷数学试题及

★ 2022年新高考Ⅱ卷数试卷及

★ 2022全国乙卷理科数及解析

★ 2022高考数学大题题型总结

★ 2022年高考全国一卷作文预测及范文

★ 2022年高考数学必考知识点总结

★ 2022年全国乙卷高考数学(理科)试卷

2023新高考数学考点

知识整合

2023新高考数学考点如下:

1、与命题:的概念与运算、命题、充要条件。②一元一次不等式组:

2、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用。

3、函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。

4、三角比与三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。

5、平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。

6、数列:数列的有关概念、等数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。

7、直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。

8、立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。

11、矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。

12、算法初步:流程图、算法语句、条件语句、循环语句。

如何评价2021年高考全国一卷数学?

整体来说,这份新高考全国1卷数学试题确实是偏易的,没有任何偏、难、怪的题目,全都是平时课上反复强调的题型和知识点。

2021年高考数学全国卷命题,落实高考内容改革总体要求,贯彻德智体美劳全面发展教育方2017年高考历史学科着重考查唯物史观,通过古今中外对比,指引学生感悟中华文明的历史,认识历史发展的总体趋势。如全国Ⅲ卷40题,以郑成功为背景,学生思考的意义,体现家国情怀和爱国主义。全国Ⅰ卷30题,讲述抗战时期扩大基础、保障各阶级平等权利的努力,体现了、平等的价值观。针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向。2021年高考数学全国卷命题,坚持思想性与科学性的高度统一,发挥数学应用广泛、联系实际的学科特点,命制具有教育意义的试题,以增强考生感,考生形成正确的人生观、价值观、世界观。

试题运用我国建设和科技发展的重大成就作为情境,深入挖掘我国经济建设和科技发展等方面的学科素材,考生关注我国现实与经济、科技进步与发展,增强民族自豪感与自信心,增强认同,增强理想信念与爱国情怀。

一、关注科技发展与进步。新高,函数与导数。主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计立体几何问题,考查考生的空间想象能力和阅读理解、数学建模的素养。

二、关注与经济发展。乙卷理科第6题以冬奥会志愿者的培训为试题背景,考查逻辑推理能力和运算求解能力。新高考Ⅰ卷第18题以“”知识竞赛为背景,考查考生对概率统计基本知识的理解与应用。甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生分析问题和数据处理的能力。

高考数学学习方法:

教科书是数学学习最基础的工具,极客数学帮建议先把书上的题做熟,多做几遍,然后弄明白每一道例题用到了什么样的知识点,还可以对例题进行练习,发现其中的变化。其实每个人都能做好这一步,但很多学生没有做到位,甚至压根儿就没有去做,所以就产生了数学难的困惑,以为做的题越多,分数就越高。

比如书上有5种类型的题,但你忽略课本,拼命地盲目做题,很可能只是在做其中一种类型的题,而另外四种类型的题却没有得到良好的训练,自然在学习数学上产生一种不适应感,事实上也不符合学数学的要求,从而摆脱盲目的题海战术。

2021年全国高考数学甲卷比2020年难度大,变化如下:

1、数列考了一道大题和一道选择题,数列考大题难度加大,主要是推导过程比较耗时间。

知识点三角和数列的问题,2020年考核的分数是三角12分,数列15分。而2021年三角考了15分,有两道选择题,有一道填空题,填空题是在第16题(填空压轴题),难度增加。

2、立体几何跟2020年不多,考了三道题,分值也是22分,基本变化不大,但是年年都要考这么多分。

高考试卷难易程度的影响

试题难度不同,受益的学生也不尽相同。比如试题偏简单的就特别有利于成绩中等偏上的学生,这会缩小他们与学霸之间的距,毕竟大家都能得高分。

如果试题较难,对于成绩较的学生而言较为有利,因为他们与中等学生之间的分就更小了,甚至有时候因为运气因素,还能实现反超。

尽管准备充分,也依然存在一定的变数。比如考试试题难度的波动。毕竟每一年的试题难度并不相同,有的年份可能偏简单,就会导致整体分数线上涨。也有的年份题型难度较大,从而导致分数线下降。

21年全国乙卷的数学试卷还是偏难的。

知识点三角和数列的问题,2020年考核的分数是三角12分,数列15分。而2021年三角考了15分,有两道选择题,有一道填空题,填空题是在第16题(填空压轴题),难度增加。

2021年高考数学全国卷命题,坚持思想性与科学性的高度统一,发挥数学应用广泛、联系实际的学科特点,命制具有教育意义的试题,以增强考生感,考生形成正确的人生观、价值观、世界观。

高考试卷难易程度的影响

试题难度不同,受益的学生也不尽相同。比如试题偏简单的就特别有利于成绩中等偏上的学生,这会缩小他们与学霸之间的距,毕竟大家都能得高分。

如果试题较难,对于成绩较的学生而言较为有利,因为他们与中等学生之间的分就更小了,甚至有时候因为运气因素,还能实现反超。

高考数学大题题型总结

导语:高考数学就是多题型的考试,需要考生多做多总结,数学网整理了高考数学题型:多做典型题多归纳总结,帮助大家提升。接下来我将跟大家一起来分享关于高考数学大题题型总结,欢迎大家的借鉴参考!希望文章能够帮助到大家!

高考数学题型:多做典型题多归纳总结

多做典型题

众所周知,学好数学要多做题,多做题能熟能生巧,但是多做题并不等于滥做题、盲目做题,而是要多做典型有代表性的题,比如说每年的真题,各个区的模拟考试题,高中化学,会做的就不做,专门做不熟的、针对自己薄弱的题型,反复做,只有熟能生巧后才能做题材速度上去,才能从量变到质变产生一个飞跃。

所说的“多”是指题目类型,而不仅仅单纯只是题目数量多。数学中题目多,通过合并,题目类型就有限了,只要把各种类型的题目各自做一定数量,加上细心领悟分析,就会发现题目的规律,进而归纳和总结出不同类型的题。

善归纳总结

在复习过程中,不仅要对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。做典型的题,而且还要善于归纳总结。有些同学就只喜欢做难题,而忽略了基础忽略了做题后的归纳与总结,总结出解题过程中的方法与技巧,总结出知识点内在的区别与联系。

实际上,所谓的难题、综合题都是由几个知识点综合在全国新高考1卷数学试题一起,如果你把基础打扎实了,各个知识点弄通了,难题综合题也就迎刃而解了,你没有发现吗?每个大题都有2-4个小问题,每个小问题单独掰开来看就是一个基础题,只不过是一个小问可能与前一个小问有关联而已。只要你善于去归纳总结,你就会发现各个知识点之间的内在联系,找到它们的关键的核心问题。

高考数学大题题型总结

一、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

高考解析几何解题套路及各步骤作规则

步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来(“翻译”);

口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;

2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;

3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;

步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。

口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;

这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得的基础,就是解方程组的问题了。

二、立体几何篇

高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

1.有关平行与垂直 (线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:

(1)根据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只有一个平面和已知平面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

解答题分步骤解答可多得分

1. 合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

2. 通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

3 .解答题规范有序。 一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

三、数列问题篇

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。

1. 在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

四、导数应用篇

专题综述

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的.学习,主要是以下几个方面:

1. 导数的常规问题:

(1)刻画函数(比初等方法细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。

2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

1. 导数概念的理解。

3. 要能正确求导,必须做到以下两点:

(1)熟练掌握各基本初等函数的求导公式以及和、、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

五、排列组合篇

1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

6. 了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。

7. 了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。

8. 会计算在n次重复试验中恰好发生k次的概率。

多位专家解读2022全国新高考,专家们都是如何说的?

3、在方程组的求解中,有时候能够直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单。

首先专家认为这次的新高考题目颇具创意,不少题目出的是非常经典,其次是专家认为高考作文引经据典,博古通今,值得肯定,是对于数学的难度提升,也表示确实有一些题目超纲,但都在合理范围之内!

1.知识范围的变化:新高考数学相对于以往的数学考试,涵盖了更广泛的知识范围。这包括增加了概率统计、向量、线性规划等新的知识点,以及在原有知识点的基础上加深了对某些内容的考查。这要求学生在学习时更加全面和深入,对各个知识点都要有充分的理解和掌握。

觉得今年的高考就是一种特殊的存在,大家经过了很多的事情,依然肩并肩参加高考。

专家对今年对高考题怎么看

题目常常不会如此简单容易,稍微加难一点的题目就是等和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

高考是高校选材育人的道关。高考考什么?绝不是简单地考大纲、考教材、考知识。

5. 了解随机的发生存在着规律性和随机概率的意义。

以下三点内容是2017年高考的重点考查内容:

重点考查一:核心价值观

核心价值观是当代精神的集中体现。中学生正处在价值观形成时期,抓好这一时期价值观的培养十分重要。

2017年高考语文学科的名篇默写中,荀子《劝学》、曹《观沧海》等呈现出自省好学、乐观进取等优良品质;古诗文阅读中,赵憙忠于职守、忠于、勤政爱民,许将为官有方、护国有节,他们作为传统道德的楷模,在当下也是立德树人的榜样。

2017年高考思想学科坚持价值。一方面,注重从生活中选取典型事迹,感染触动学生,另一方面,又聚焦大事、热点,学生运用所学知识理性分析现象,达到情感与理智的交融,坚定理想信念。如全国Ⅰ卷39题以常委会对基本法作法律解释为背景材料,学生认识“”的危害,自觉维护统一,培养宪法意识、法治理念。

2017年高考地理学科注重通过人地协调观,传递人与环境之间的和谐之美,培养学生的家国情怀和感。如全国Ⅰ卷43题以“旅游价值古村落”之一的桂林江头洲村为例,要求学生思考在旅游开发过程中对传统古民居和村落的保护问题,学生树立在开发与保护、生活与旅游之间维持良好平衡的可持续发展的观念。

2017年高考其他学科也在试题中全方位渗透核心价值观,充分发挥高考对学生的和教育作用。如数学、理综以前人智慧和贡献、我国科技进步为素材设计试题,弘扬我国历史文化、展现发展成就;英语渗透中外文化知识,培养学生视野。

【启示】今后的高考将更加凸显“立德树人”的教育功能。语文的名篇默写、文言文阅读,、历史、地理试题的背景材料,将更加侧重从文学作品和历史、现实积淀中,精心选粹饱含人文精神与时代气息的素材,学生热爱祖国的语言文字和博大精深的文明,感受认同核心价值观深厚的内涵。

重点考查二:中华传统文化

“以文化人、以文育人”增强感召力

独特的历史和文化是立德树人的底气和底蕴,2017年高考试题充分体现对中华传统文化的传承和升华。

2017年高考语文全国Ⅱ卷作文“中华名句用用看”,将中华传统文化有机融入材料,突出语文学科“以文化人、以文育人”的鲜明特点和独特育人优势。

该作文将“天行健,君子以自强不息(《周易》)”“受光于庭户见一堂,受光于天下照四方(魏源)”“数人物,还看今朝()”等六句分别来自不同时期的中华名句并列齐观,包含自强奋发、家国之爱、豁达自信、敢于担当等丰富内涵,涉及个人、与等不同层面。试题学生通过自主思考,激活名句的内在生命力,把传承中华传统文化与培育核心价值观紧密结合起来,激发学生感受文化魅力,思考文化传承,增强文化自信。

2017年高考文综以试题为载体弘扬中华传统文化,坚持了文综命题的一贯风格。

诗词是中华传统文化的瑰宝。全国Ⅰ卷40题,以诗词大会为情境主题,以诗词为桥梁,激发学生共鸣,要求学生思考在传承发展中华传统文化中如何坚持以为中心,学生运用主义的立场观点方法分析问题,培育学生成为中华传统文化的守护者、弘扬者。全国Ⅲ卷1—3题以人类非物质文化遗产代表作传统剪纸艺术为载体,通过人文景观去考查其蕴含的地理规律、特征和过程,学生感悟和谐共生的人地关系之美。

【启示】今后的高考将更加重视对传统文化的考查。名篇名句、历史典故、各类遗产,考生们不能临时抱佛脚地去背,应在日常学习生活中有意识地去亲近、熟悉。把传统文化学习作为语文等科目的重要组成部分。

2017年高考不拘泥于“固定”的教材,而是从历史到现实,从到国内,从到个人,从理想到实践,环环相扣,融会贯通,聚焦时代使命。

一是从历史到现实,学生正确认识世界和发展大势。历史学科重点考查国史、史、改革开放史、发展史,如全国Ⅱ卷41题,以清朝雍正年间、近代洋务运动时期、新个五年期间三个不同时段的矿业政策为线索,反映出长时段历史巨变和求富求强的轨迹,充分体现了制度的优越性。

思想学科选取重要讲话中的重要论述为材料,学生运用所学知识思考、领悟背后深刻的哲学方和价值取向;充分反映治国理政新理念新思想新战略,如“十三五”脱贫攻坚、监察体制改革等主题,学生认识和把握特色事业必须坚持以为核心。

二是从到国内,学生正确认识特色和比较。今年5月喜逢“”合作高峰胜利召开,高考正面突出这一战略,如全国Ⅰ卷作文“”在材料中列入“”、文综全国Ⅲ卷38题“走出去”等。文综全国Ⅲ卷39题,以倡导构建人类命运共同体为情境主题,启发学生思考治理的方案,理解与世界的休戚与共、对世界的积极贡献,培养强烈民族自信心自豪感。

三是从到个人,学生正确认识时代和历史使命。如文综全国Ⅱ卷40题以创新的科技领航者先进事迹为情境,以榜样的力量感染触动学生,学生胸怀报国梦。今年是恢复高考40,全国Ⅲ卷作文以“高考作文话高考”为主题,学生在历史的大背景下审视个人发展,激励一代青年将个人理想融入和民族的事业。

四是从理想到实践,学生正确认识远大抱负和脚踏实地。试题要求学生运用人的价值相关知识进行思考,学生把视线投向需要、发展,脚踏实地、埋头苦干、实现人生抱负。

【启示】今年下半年,的将要胜利召开。这是今年我国生活中的一件大事,精神也将是今后相当长一段时期全全重点学习、贯彻的内容。这样的重大现实,必将体现在2018年的高考命题中。考生们切勿认为,这些只会出现在文综试题中,各个学科都会体现的新精神、新论述。

高考特点:基础,综合,应用,探究,开放

把“虚概念”理解透,就是备考方向

增强基础性:

不是考教材原话,而是考查学生必备知识和关键能力

“基础性”包括全面合理的知识结构、扎实灵活的能力要求和健全向上的人格素养。高考通过加强对基本概念、基本原理、基本思想方法的考查,学生重视基础,将所学知识和方法内化为自身的能力。

例如,2017高考语文学科将论述类文本阅读、文学类文本阅读和实用类文本阅读均设置为必做题,对不同的思维方式和素养构成进行考查,全面覆盖信息筛选、逻辑分析、审美鉴赏以及语言运用等能力。

增强综合性:

不是考“大杂烩”,而是考查学生的知识体系和对知识间联系的把握

综合性主要体现考察学生综合运用学科知识、思维方法,多角度地观察、思考,发现、分析和解决问题的能力。高考试题设计注重素材选取的普遍性,突出知识体系的完整性和知识间的联系,要求学生能够基于试题情境深入思考,整合所学知识得出观点和结论。

比如,2017高考全国Ⅰ卷25题物理试题以学生熟悉的带电油滴实验为背景,构造相对复杂的物理过程,要求学生经过分析并对相关情形进行讨论,综合运用相关概念和规律解决问题。全国Ⅰ卷27题化学试题,呈现由钛铁矿生产锂离子电池电极材料的工艺框图,提供必要数据,要求学生利用元素化合物以及热力学、动力学等知识分析选择物质提取和转化的条件,考查学生的综合运用能力。

加强应用性:

不是理论“空对空”,而是考查解决现实问题

应用性,主要体现考察学生运用所学知识解决实际问题的能力。2017高考试题注重将学科内容与经济发展、科学进步、生产生活实际等紧密联系起来,通过设置新颖的问题情境,学生关注进步和科学发展。

增强探究性和开放性:

各科的压轴题着重考查学生的创新意识,北大清华学生就从这些题中选拔!

创新性主要体现在考察学生思考能力,看其是否能够自觉运用批判性和创新性思维方法。试题通过增强情境的探究性和设问的开放性,允许学生从多角度思考,对同一问题或现象得出不同的结论,使学生能够从标准的束缚中解放出来,发展个性,增强创新意识。

例如,数学全国Ⅰ卷12题紧扣“大众创业,万众创新”的时代背景,以学生熟知的源于生活的“软件激活码”为切入点,借助等数列、等比数列,着重考查学生的创新应用能力。全国Ⅱ卷35题化学试题以我国科学家发表的“五氮阴离子化合物”科研论文为背景,要求学生创造性地解释新颖化合物稳定存在的结构因素,体现题材新颖、形式独特、设问创新的特点。全国Ⅲ卷36题地理试题要求学生选择并回答是否赞同在某地扩大温室农业生产规模的理由,使学生从标准的束缚中解放出来,培养创新思维。

2018年命题方向预测

语文:阅读“关键能力”的培养很重要

2018高考语文将扩大文本选取范围。论述类文本将多选用论文和时评,考查逻辑论证和批判推理能力;实用类文本将多选用和报告,考查信息处理和超文本阅读能力;文学类文本将多选用和散文,考查审美鉴赏能力。

“关键能力”。学生在阅读广度、数量、速度上要下大功夫。只有全面培养阅读能力、文学素养和思维品质,才能在今后的高考考场中胜出。

数学:逻辑推理能力要重视

2018高考数学将把考查逻辑推理能力作为重要任务,以数学知识为载体,考查学生缜密思维、严格推理的能力。同时,通过多种渠道渗透数学文化,如有的试题将通过数学史展示数学文化的民族性与世界性;有的将通过揭示知识的产生背景和形成过程,体现数学的创造、发现和发展特点;有的将通过对数学思维方法的总结、提炼,呈现数学的思想性。

英语:综合语言运用能力得尽快养成

2018高考英语将通过深度发掘语篇材料思想内涵,突出对综合语言运用能力的考查,促进学生学习能力、交际能力、人文底蕴的养成。

如阅读理解部分可能选取科技创新、环境保护、、遗产保护等话题文章设计试题,学生在理解文章内容和作者观点态度的基础上深入思考人与自然、的关系,体悟和谐发展之道。

文科综合:学科素养不是一句空话

2018高考文科综合将注重创新试题设计、挖掘时代主题、构建问题情境,突出地理、思想、历史学科所独具的思维与分析方法。

如地理试题将更加注重反映人地协调观、综合思维和区域认知的价值取向,将地理学思想方法自然、贴切地融入素材。

思想学科将精心选择能够更好地承载学科知识、反映学科特色的素材,贴近学生生活、贴近时代,更好地发挥考试对教学的导向和促进作用。

历史学科将更加注重考查历史思维过程与方法,如学生对历史事实和历史叙述这两种不同史学概念的理解和辨别程度。

理科综合:新知识或拓展信息将更多出现

2018高考理科综合将坚持把创新思维和学习能力考查渗透到命题全过程,向学生提供新知识或原有知识的延伸拓展信息,考查学生的探究能力和创新精神。

如化学试题可能增加化学反应图形和性能关联图形的体裁,让学生在获得化学信息的基础上,回归到基本反应原理和物质结构知识中去。通过延伸基本知识,在培养学生自学和探究精神方面也进行积极探索。

物理学科通过将动量和近代物理作为必考内容进行考查,完善学生的知识结构,为学生解决问题提供更多有力工具,有利于学生更好地认识实际现象,理解更深层次问题。

生物学科要求学生能够对生物学问题进行探究,包括提出问题、做出设、制定和实施、得出结论、科学表达等;同时,要求学生具备实验设计、实验结果预测的能力。

您好,今年的高考题都已经实现统一化,考试题目已经通过委婉的方式讲出,只要是众所周知的知识都是合理的,谢谢

高中数学数列方法和技巧

数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等数列,等比数列的考查每年都不会遗漏。下面是我为大家整理的关于高中数学数列 方法 和技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1高中数学数列方法和技巧

一.公式法

如果一个数列是等数列或等比数列,则求和时直接利用等、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.

二.倒序相加法

如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等数列的前n项和公式即是用此法推导的.

三.错位相减法

如果一个数列的各项和是由一个等数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.

四.裂项相消法

把数列的通项拆成两项之,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下项和一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.

五.分组求和法

若一个数列的通项公式是由若干个等数列或等比数列或可求和的数列组成,则求和时可2.性质:用分组求和法,分别求和然后相加减.

2高中数学数列问题的答题技巧

题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

总之,每次碰到一道陌生的数列题,要进行 总结 ,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法

解题过程要规范

高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。

先熟后生

高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中题目的目的。

首先、准备好 笔记本 和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有 经验 的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。

草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下比你光看光想的效果要好得多。

其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。

高中数学数列方法和技巧相关 文章 :

1. 高中数学的100个学习方法与高中数学48条秒杀的公式

2②不等式的两边都乘以或者除以一个正数,不等号方向不变。. 高中数学学习方法和技巧是什么

3. 高中数学学习的方法技巧

5. 高中数学六种解题技巧与五种数学答题思路

6. 高二数学学习方法和技巧大全

7. 高中数学50个解题小技巧

8. 高中数学学习方法及策略

9. 高中数学学习方法总结

高中数学数列答题技巧有哪些

10、复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。

随着高中学习的不断深入,数列在数学解题中也发挥了越来越重要的作用。它既是高考考察内容中十分关键的一个部分,也能够贯穿到高中数学的实际应用环节当中,与函数、向量、立体几何都有着一定的联系。今天我就为大家整理了高中数学数列答题技巧,供大家参考。

答题技巧一、高中数列,有规律可循的类型无非就是两者,等数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

1 高中数列答题技巧

答题技巧1、求(商)法

答题技巧2、叠乘法

答题技巧3、等型递推公式

答题技巧4、等比型递推公式

答题技巧5、倒数法

1 高中数学数列问题的答题技巧

答题技巧二、题目常常不会如此简单容易,稍微加难一点的题目就是等和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

答题技巧三、题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

答题技巧四、对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

答题技巧五、对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

答题技巧六、总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

未来高考数学发展趋势的研究性学习

课下有问题就问,不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试 教育 ,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。

戴狼狼。就由你狐哥告诉你 中文摘要2009年数学高考大纲解读:保持稳定已成格局 研究背景2009年数学高考大纲解读2009年的《高考大纲》数学科目在2008年的考纲的基础上基本没有变动。这一特点说明全国高考数学科的考试通过多年的探索、改革,已逐渐趋于稳定的格局,形成“保持稳定,注重基础,突出能力,着力创新”的特色。《考纲》强调了对数学基础的考查。对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面,从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度。通过仔细研读《考纲》对“考试内容”的具体要求,不难发现,其重点内容集中在函数、导数、三角函数、向量、概率与统计、数列、不等式、直线与平面、直线与圆锥曲线等是支撑数学学科知识体系的重点内容。考纲对试题易、中、难的比例有较明确规定,以容易题、中档题为试题主体,较难题占30%。在难度分布上文科试题仍然会坚持由易到难排序的线性递进排列方式,文科试题“适当拉大试题难度的分布区间,试题难度的起点降低,而试题难度终点应与理科相同”。而理科试题的难度排序仍然会采用起伏变化和螺旋上升的处理方式,且文科试题的难度仍可能会适度降低,文理科试卷的难度异将会加大,力求文理科学生成绩平衡。 研究内容二.备考建议: 1. 明确考点,突出重点。《考试大纲》中指出:对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试题的主体。《考试大纲》在考试内容部分按文、理科列出了详细的考点:理科立体几何用9(A)版的共有132个考点,用9(B)版的共有138 个考点;文科立体几何用9(A)版的共有116个考点,用9(B)版的共有122 个考点。从历年的高考试题看,对高中数学教材各章所涉及的概念、性质、公式、法则、定理的应用都作了较为全面的考查。因此,复习中应当注意各个考点的面面俱到,防止因人为猜测“不考”而漏缺。当然复习时应注意有所侧重,在近年不刻意追求知识覆盖面的前提下,更加突出了对函数、数列、三角函数、平面向量、不等式、圆锥曲线方程、直线平面简单几何体、概率与统计、导数九大重点章节知识的考查。这显然体现了《考试大纲》对重点知识重点考查的命题要求,它无疑启示我们在全面落实双基的同时,更应该注意突出重点知识,并加以反复锤炼。事实上,历年高考试题既考查基础知识,又考查综合内容,但综合的根基是基础。只有双基扎实了,重点领会了,才能逐步提高综合能力。2. 提炼思想,发展思维。对数学思想的考查是高考一贯坚持的原则。近年来,大家共识的数学思想有七种:函数与方程的思想,数形结合的思想,分类与整合的思想,化归与转化的思想,特殊与一般的思想,有限与无限的思想,或然与必然的思想。加强对数学思想方法的考查,对于学生深刻领悟数学学科特点,学会数学地提出问题、分析问题和解决问题,发展学生的理性思维,培养学生的能力,起着至关重要的作用。因此,在高考复习中,应善于提炼数学思想,并能运用数学思想方法有效地解决相关问题。3. 注重交汇,变换视角。《考试大纲》明确要求,要从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。随着新课程改革的不断深入,知识网络的交汇点正在不断丰富,函数导数方程与不等式、平面向量与三角函数,解析几何与平面向量、解析几何与平面几何、概率统计与计数原理,已毫无争议地成了新的知识网络交汇点,因而理所当然地成了高考命题的新热点。这些新热点与“数列函数与不等式、空间图形与平面图形、三角函数与三角变换”等原有的知识网络的交汇点一样,在2009年乃至今后的高考命题中必将越来越受到命题专家们的重视和青睐。因此,高三复习要善于挖掘新的知识网络交汇点,善于捕捉高考命题新热点。4. 新旧结合,推陈出新。今年和明年正是大纲教材向课标教材过渡的时期。为了支持新一轮课程改革,高考数学试题的命制,将适度吸收新课程的理念。例如把平面几何中的面积问题与解析几何综合考查就是一个很好的例题。此外,课标教材选修2-2中的合情推理也很容易被大纲版试题命制所吸纳。这种试题往往能较好地体现新旧知识的交融,新旧结合,推陈出新的原则跃然纸上。5. 适度创新,开发潜能。高考中命制一定的创新问题是时代发展的需要。高考数学创新试题常见的有自主定义型、直觉判断型、类比推理型、归纳猜想型、探索发现型、研究设计型六类。创新问题的求解一般没有现成的公式、法则、定理等供直接套用,需要通过对问题的阅读理解,从中学习并领悟出解决问题的知识,自行设计解决问题的思路和方法,体现思维的深度和广度,由此检测考生的自主学习能力、创造性地解决问题的能力以及进一步发展的潜能。显然,这在思维上具有较高的要求。因此,我们应当加强针对这类问题的专项训练,只有这样,才能有效地培养学生的创新意识,提高学生的潜在能力。三.考点解析 1.与简易逻辑。分值在5~10分左右(一道或两道选择题),考查的重点是抽象思维能力,主要考查与的运算关系,将加强对的计算与化简的考查,并有可能从有限向无限发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。2.函数与导数:函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。3.不等式;一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。5.三角函数:分值在20分左右(两小一大)。三角函数考题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.高考对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。向量是新增的重点内容,它融代数特征和几何特征于一体,能与三角函数、函数、解析几何、立体几何自然交汇、亲密接触。在处理位置关系、长度、夹角计算上都有优势,向量作为代数与几何的纽带,理应发挥其坐标运算与动点轨迹、曲线方程等综合方面的工具性功能,因此加大对向量的考查力度,充分体现向量的工具价值和思维价值,应该是今后高考命题的发展趋势。向量和平面几何的结合是高考选择、填空题的命题亮点,向量不再停留在问题的直接表达水平上,而与解析几何、函数、三角等知识有机结合将成为一种趋势,会逐渐增加其综合程度。7.立体几何:分值在22分左右(两小一大),两小题以基本位置关系的判定与柱、锥、球的角、距离、体积计算为主,一大题以证明空间线面的位置关系和有关数量关系计算为主,诸如空间线面平行、垂直的判定与证明,线面角和距离的计算。试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则。8.解析几何:课本第七章直线与圆的方程、第八章圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分。其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题。解析几何的重点仍然是圆锥曲线的性质,包括:直线的倾斜角、斜率、距离、平行垂直、点对称、直线对称、线性规划有关问题等等。直线和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思想及用韦达定理处理弦长中点为重点。坐标法使平面向量与平面解析几何自然地联系并有机结合起来。相关交汇试题应运而生,涉及圆锥曲线参数的取值范围问题也是命题亮点。9.排列、组合、二项式定理、概率统计:分值在22分左右(两小一大),排列组合与二项式定理一般各一个小题,大题理科以概率统计、文科以求概率的应用题为主,分值超过其所占课时的比重。这部分考查内容包括:二项式定理及运用;排列与组合;概率与统计。在解答题中,排列、组合与概率是重点。其考查方式以排列组合为基础,着重考查学生应用概率知识解决实际问题的能力。理科考查重点为随机变量的分布列及数学期望;文科以等可能、互斥、相互的概率求法为主。特别要引起注意是以“正态分布”相关内容为题材,文科卷以“抽样”相关内容为题材设计试题,已成为部分省分命题的载体。


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看