高考数学总概括_高考数学128个知识点的内容

高三数学复数知识点整理

cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

复数是高考选择题必考的知识点之一,想要高考得高分,选择题就一分也不能丢,我为各位学子整理了《 高三数学 复数知识点整理》感谢阅读!

高考数学总概括_高考数学128个知识点的内容高考数学总概括_高考数学128个知识点的内容


高考数学总概括_高考数学128个知识点的内容


高考数学总概括_高考数学128个知识点的内容


【一】

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈R时,a+bi=0

复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的 方法 步骤:

(1)把给的复数化成复数的标准形式;

(2)根据复数相等的充要条件解之。

【二】

复数的概念:

形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的叫做复数集,用字母C表示。

复数的表示:

复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

复数的几何意义:

(1)复平面、实轴、虚轴:

点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

(2)复数的几何意义:复数集C和复平面内所有的点所成的是一一对应关系,即

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

复数的模:

复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

虚数单位i:

(1)它的平方等于-1,即i2=-1;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1会根据概念、法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。。

复数模的性质:

复数与实数、虚数、纯虚数及0的关系:

对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

高三数学复数知识点整理相关 文章 :

1. 高三数学必修四知识点整理

2. 高三数学必考知识点汇总

3. 高三数学知识点考点总结大全

4. 高三数学考前重点知识点

5. 高考数学重点知识概括整理

6. 高三数学复习数列知识点梳理

7. 高三文科数学常考知识点整理归纳

8. 高三年级数学必背知识点

9. 高三数学知识点考点大全

10. 高三文科数学常考知识点归纳整理

高考数学复合函数知识点归纳

a=0,b=0.

不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠?时,二者才可以构成一个复合函数。下面是我为大家精心数学复合函数知识点 总结 ,希望能够对您有所帮助。

cot(π/2-α)=tanα

高考数学复合函数知识点归纳

1.复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是

D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的,即求各部分定义域的交集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

注:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1_2,任一周期可表示为k_1_2(k属于R+)

2.复合函数单调性

依y=f(u),μ=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

⑴求复合函数的定义域;

⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);

⑶判断每个常见函数的单调性;

⑷将中间变量的取值范围转化为自变量的取值范围;

⑸求出复合函数的单调性。

三角函数诱导公式记忆口诀

“奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

三角函数诱导公式大全

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

推算公式:3π/2±α与α的三角函数值之间的关系:

sin(3π/2+α)=-cosα

sin(3π/2-α)=-cosα

cos(3π/2+α)=sinα

cos(3π/2-α)=-sinα

tan(3π/2+α)=-cotα

tan(3π/2-α)=cotα

cot(3π/2+α)=-tanα

cot(3π/2-α)=tanα

两角和公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

二倍角的正弦、余弦和正切公式

tan2α=2tanα/[1-tan2(α)]

tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα

半角的正弦、余弦和正切公式

sin2(α/2)=(1-cosα)/2

cos2(α/2)=(1+cosα)/2

tan2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

公式

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=[2tan(α/2)]/[1-tan2(α/2)]

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

三角函数的和化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数的积化和公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

高考数学复合函数知识点归纳相关 文章 :

1. 2020高三数学函数知识点归纳

2. 高考数学知识点总结归纳

3. 高考数学必考知识点考点2020大全总结

4. 高考数学易混淆知识点总结精华版

5. 高中数学高考知识点 高中数学高考要点

6. 2017年高考数学函数的单调性必考知识点

7. 高中数学函数知识归纳总结

8. 高考数学必考知识点考点2020

9. 高考数学考点2020总结概括

10. 高考数学知识点口诀

高三数学会考知识点整理大全

由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。下面是我给大家带来的 高三数学 会考知识点整理大全,以供大家参考!

高三数学会考知识点整理大全

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高三数学复习知识点

考点一:与简易逻辑

部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型、

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目、

考点五:立体几何与空间向量

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的`位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明

高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”、考查的热点是流程图的识别与算法语言的阅读理解、算法与数列知识的网络交汇命题是考查的主流、复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大、推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问

高三数学复习知识点

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

2、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3、法

在命题的条件和结论间的关系判断有困难时,可从的角度考虑,记条件p、q对应的分别为A、B,则:

若A?B,则p是q的充分条件。

若A?B,则p是q的必要条件。

若A=B,则p是q的充要条件。

若A?B,且B?A,则p是q的既不充分也不必要条件。

三、知识扩展

1、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆tan(2kπ+α)=tanα(k∈Z)否命题,也可以叙述为:

(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

2、由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

高三数学会考知识点整理大全相关 文章 :

★ 高三数学会考知识点

★ 高三数学考试必考的重要知识点归纳

★ 高三数学都有哪些知识点

★ 高三学年数学考试主要考的知识点

★ 高三期末数学考试知识点

★ 高三数学学业考试知识点归纳

★ 高三数学模拟考试知识点概括

★ 高考数学知识点复习考试指导文章

★ 2017中职高三数学公式大全

★ 高考数学攻略:7个易错点函数分析

2022高考数学有效解题技巧 数学答题技巧总结

3,推理论证能力

数学高考答题过程中的仔细审题。这是关键步骤,要求不,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。

直观想象能力

数学解题技巧

1、首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2、其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间异的基础上,化归和消除这些异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

3、,题目总结。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

数学答题技巧有什么

通览全卷,迅速摸透题情

刚拿到试卷,一般心情比较紧张,建议拿到卷子以后看一下,看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服前面难题做不出,后面易题没时间做的有效措施,也从根本上防止了漏做题。

2013高考数学重点:数列公式及结论总结

⑹分段函数的定义域是各段上自变量的取值的并集。

数学中有很多的概念和公式,只有理解这些概念,才能正确解题。数列中有很多性质和公式,这些是我们做题的基础,很多同学觉得数列的性质公式太多太杂,记不住。其实按照一定方法将数列性质公式进行归纳总结,记住它们就简单多了。下面是我为大家整理的高中数列基本公式,希望对大家有帮助。

一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等数列的前n项和公式:Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn=

三、高中数学中有关等、等比数列的结论

1、等数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等数列。

2、等数列{an}中,若m+n=p+q,则

3、等比数列{an}中四、狠抓常规,强化落实与检查,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等数列{an}与{bn}的和的数列{an+bn}、{an-bn}仍为等数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an

bn}、

、仍为等比数列。

7、等数列{an}的任意等距离的项构成的数列仍为等数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等数列的设法:a-d,a,a+d;四个数成等的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

11、{an}为等数列,则

(c>0)是等比数列。

12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c

1) 是等数列。

13. 在等数列

中:

(1)若项数为

,则

(2)若数为

则,

,14. 在等比数列

中:

(1) 若项数为

,则

(2)若数为

则,

高考数学主要考察考生哪些能力

⑵当为偶次根式时,被开方数不小于0(即≥0);

1,空间想象能力

对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。

2,抽象概括能力

4,运算求解能力

5,数据处理能力

6,应用和创新意识。

解决问题的能力。学历高跟学历的人是有区别的。

分别是空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、分析问题和解决问题的能力。

首先,基本的知识点要掌握,,数列,基本不等式,三角函数,导数,几何知识(空间感),解析几何等等的基本知识要牢记掌握。其次,题型会变但是万变不离其宗,它的根本知识点是不变的,因此,要多练多算,多写题,来逐步了解知识点的延伸变化。,知识点会相互交叉,一道题会考你对知识的综合掌握理解能力,而这些都需要通过大量计算,来巩固强化对知识的理解运用能力……说白了:多做题,多总结,综合能力就提高了。

首先,基本的知识点要掌握,,数列,基本不等式,三角函数,导数,几何知识(空间感),解析几何等等的基本知识要牢记掌握。其次,题型会变但是万变不离其宗,它的根本知识点是不变的,因此,要多练多算,多写题,来逐步了解知识点的延伸变化。,知识点会相互交叉,一道题会考你对知识的综合掌握理解能力,而这些都需要通过大量计算,来巩固强化对知识的理解运用能力……说白了:多做题,多总结,综合能力就提高了。

高考数学考什么

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

1.必备知识

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

必备知识包括数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,也包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。高考数学重新确定了考试内容,根据能力考查的要求,在课程标准范围内,精选课程内容,必修课程包括五个主题, 分别是预备知识、函数、几何与代数、统计与概率、数学建模活动与数学探究活动。选择性必修课程包括四个主题,分别是函数、几何与代数、概率与统计、数学建模活动与数学探究活动。数学文化融入课程内容。 必修课程和选择性必修课程都是高考的内容。数学高考依据高校人才的选拔需求和考试的特点,以课程标准为基础,将其中的必修内容与选择性必修内容依据知识的内在联系进行整合,按逻辑系统进行分类,对知识内容和要求进行调整,整合后的考试内容包括、常用逻辑用语等十八个部分,数学建模活动、数学探究活动、数学文化将会融入上述知识内容的考查中。

2.关键能力

关键能力是学生在面对与学科相关的生活实践或学习探索问题情境时,能够有效地认识问题、分析问题和解决问题所必须具备的能力。

逻辑推理能力

会对问题或资料进行观察比较、分析、综合、抽象与概括,会用演绎、归纳和类比进行推理;能准确、清晰、有条理地进行表述。

能根据条件画出正确的图形根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形等手段形象地揭示问题的本质。

能结合日常生活、其他学科、学习实践中的素材,发现问题、提出问题;能灵活应用所学的数学知识、思想方法,思考、探索和研究,分析问题、解决问题。

运算求解能力

数学建模能力

能在实际情境中从数学的视角发现问题、提出问题、分析问题建立模型,求解模型,检验结果、改进模型,能对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题。

3. 学科素养

学科素养是指在正确的思想观念指导下综合运用学科知识能力处理并解决复杂任务的品质,是高考评价体系中考查目标的重要组成部分。数学对课程标准中的数学核心素养进行抽象和概括,提出了高考数学的学科素养目标,包括理性思维、数学应用、数学探究与数学文化。与课程标准中的核心素养相比,高考数学的学科素养更符合教育测量的规律,更具有高考的特点,更有利于实现高考的教育、评价和导向功能。

山东数学高考考的主要内容是什么?

创新能力

1、是三角函数。一般考三角函数之间的转换关系,不会太难,近年来数学大题邮箱应用题方向靠拢,可能会以此作为基础。

2、立体几何,建系、设点、写坐标,函数和解析几何。都可以作为压轴题,位置不定。难度一般都很大。

3、函数。一般和不等式结合,(也是最难的一步)要学好放缩关系。函数体一般会分成三个小题,(为降低难度)一般为放缩求不等关系。解题时注意运用上一小题的提示。

4、解析几何。一般为圆锥曲线。抛物线和椭圆轮着来。无非就考一些定点、定直线、定角问题。

5、选择题12个 必有、立几、不等式,通常解几压轴比较难,填空4个、一个多选的有难度 其他的挺普通的,大题6个 三角、立几、概率、不等式、解几和压轴各一个。

,函数与导数。主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析Sn=几何。是高考的难点,运算量大,一般含参数。

我先给你说山东数学怎样出题的。先出大题。一般是两个大学老师和一个中学老师出一个题。(大学的管命题,中学的管审题,防治难度过大)

个是三角函数,一般考三角函数之间的转换关系,不会太难,近年来数学大题邮箱应用题方向靠拢,可能会以此作为基础。

第二个是立体几何,建系、设点、写坐标,再把关系一代基本上就OK了。

第三题概率,就更简单了。无非就考求E之类的,弄清关系,别弄混就行。

第四题(近几年是向量)别看平时做向量很难,从近几年考题来看,向量问题都不难。掌握好方法就行。

第五题和第六题:函数和解析几何。都可以作为压轴题,位置不定。难度一般都很大。

先说函数:一般和不等式结合,(也是最难的一步)要学好放缩关系。函数体一般会分成三个小题,(为降低难度)一般为放缩求不等关系。解题时注意运用上一小题的提示。

解析几何:一般为圆锥曲线。抛物线和椭圆轮着来。无非就考一些定点、定直线、定角问题,平时多练多总结就好。

大题出完就看少哪些知识点,从少的钟抽出一些考选择和填空。

选择12个 必有 立几 不等式 通常解几压轴比较难

填空4个 一个多选的有难度 其他的挺普通的

大题6个 三角 立几 概率 不等式 解几 压轴 各一个

系统复习就好

高二 学好基础知识最重要 另外 做到的好题及时总结啊~

选择12个 必有 立几 不等式 通常解几压轴比较难

填空4个 一个多选的有难度 其他的挺普通的

大题6个 三角 立几 概率 不等式 解几 压轴 各一个

系统复习就好

每章节都涉及啊。都是知识点了。只要平时认真总结错题。就没问题

高三上学期数学期末总结

如果不能,说明这个途径不对,立即改变方向;

时如流水,匆匆而逝。在你工作忙碌时这个学期就已经过去了。朋友,作为数学老师的你对这个学期末有什么感想呢?下面是由我为大家精心整理的“高三下学期数学期末总结”,欢迎大家阅读,仅供大家参考,希望对您有所帮助。

高三下学期数学期末总结(1)

这是我年任教高三年级,在这一年的时间里,我深知肩上的,一直以来我努力的工作学习,我以及我们数学备课组经常积极交流,团结协作,对于存在的问题和不足及时有效的进行改正,也根据学生的实际情况制订了一些教学方案.由于工作比较有成效,所以在今年的高考中,我校考生取得了较好的成绩,我想这与校级的大力支持和重视是分不开的,为我们高三教学工作提供了准确的,及时的指导和帮助,当然这也与我们高三数学组全体教师的团结协作和奋力拼搏是分不开的.回顾一年的教学工作,我们有成功的经验,也发现了不足之处.下面就我上学期的具体做法谈谈自己的一点看法,总结如下:

一 加强集体备课 优化课堂教学

新的高考形势下,高三数学怎么去教,学生怎么去学 无论是教师还是学生都感到压力很大,针对这一问题备课组在学校和年级部的下,在姚老师和高老师以及笪老师的的具体指导下,制定了严密的教学,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求.即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展,培养学生的能力,为其自身的进一步发展打下良好的基础. 在集体备课中我们几位数学老师团结协作,发挥集体力量. 高三数学备课组,在资料的征订,测试题的命题,改卷中发现的问题交流,学生学习数学的状态等方面上,既有分工又有合作,既有统一要求又有各班实际情况,既有"学生容易错误"地方的交流又有典型例子的讨论,既有课例的探讨又有信息的交流.在任何地方,任何时间都有我们探讨,争议,交流的声音.集体备课后,各位教师根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教.

二 立足课本 夯实基础

高考复习,立足课本,夯实基础.复习时要求全面周到,注重教材的科学体系,打好"双基",准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多的学生脱颖而出提供了更多的机会和空间,有利于的学生限度发挥自己的潜能,取得更好的成绩;对于生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,限度提高他们的数学成绩.

三 因材施教 全面提高

我今年带得是一个文科,一个理科班.因此学生的整体情况不一样,同一班级的学生,层次别也较大,给教学带来很大的难度,这就要求我从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习,课堂训练,课后作业的布置和课后的辅导的内容也就因人而异,对不同班级,不同层次的学生提出不同的要求.在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题,解决问题的能力.课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高.掌握学情,做到有的放矢. 深入学生中去了解学生的实际学习情况,学习水平和学习能力,及时调整教学内容和课堂容量,提前渗透数学思想方法,使教师的教和学生的学都是符合学生的学习实际情况,做到了有的放矢,让每一位同学在课堂学习中得到属于自己的收益.

四 优化练习 提高练习的有效性

知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因.练习的讲评是高三数学教学的一个重要的环节,为了限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性.多做限时练习,有效的提高了学生的应试能力 .

五 加强应试指导 培养非智力因素

充分利用每一次练习,测试的机会,培养学生的应试技巧,提高学生的得分能力,如对选择题,填空题,要注意寻求合理,简洁的解题途经,要力争"保准求快",对解答题要规范做答,努力作到"会而对,对而全",减少无谓失分 ,指导学生经常总结临场时的审题答题顺序,技巧,总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题,答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心,纠正不良的答题习惯,优化答题策略,强化一些注意事项.注重"三点",培养学习习惯. 高三复习注意到低起点,重探究,求能力的同时,还注重抓住分析问题,解决问题中的信息点,易错点,得分点,培养良好的审题,解题习惯,养成规范作答,不容失分的习惯.

高三下学期数学期末总结(2)

新的高考形势下,高三数学怎么去教,学生怎么去学?无论是教师还是学生都感到压力很大,针对这一问题制定了严密的教学,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展、培养学生的能力,为其自身的进一步发展打下良好的基础在集体备课中,注重充分发挥各位教师的长处,在姜加乾的带领的团队下,出现了王大浪、王庆和、李宝华、曹兆芳、戴耶耶、刘迎会、陈为霞、王春光、王永山、谈步猛等教学实绩的老师,集体备课前,每位教师都准备一周的课,集体备课时,每位教师都进行说课,然后对每位教师的教学目标的制定,重点、难点的突破方法及课后作业的布置等逐一评价。集体备课后,我根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教。

研究《考试说明》中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也为复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:

(1)细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容。

(2)仔细剖析对能力的要求和考查的数学思想与教学方法有哪些?有什么要求?明确一般的数学方法,普遍的数学思想及一般的逻辑方法(即通性通法)。

三、重视课本,狠抓基础,构建学生的良好知识结构和认知结构

精心选题,针对性讲评。我们发扬数学科组的优良传统,落实“以练为主线”的教学特色。认真抓好每周的“一测一练”。“每周一测”、既要注重重点基础知识,出“小,巧,活”的题目;又要注意培养学生的能力,出有新意的题目,只要能抓住这两点,就是好题。

对每次测验和练习,我们都坚持认真批改,全面统计。为发挥学生的学习自主性,还要求学生对自己做错了的习题进行改错,提高习题课讲评的针对性与课堂教学的效率性。

五、注重“三点”,培养学习习惯

高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。

六、填空题的地位与复习策略

虽然高考中填空题占分的比例接近50%,高考考它们的方向是基础与全面,为顾及到各层次的考生,高考一定要考基础,考试的知识点覆盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有1-2道难度大的题就足够了。而文科这是很重要的一部分,所以复习时应用花大的精力去抓选择填空题,实际上,实践告诉我们,难的选择填空题是押不上的,遇到时只能依靠学生自己的数学能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我们除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。

七、不同学生不同要求

高考采用新的模式,学生选修的科类不同,因此学生的整体情况不一样,同一班级的学生,层次别也较大,给教学带来很大的难度,这就要求每位教师要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同班级、不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。

对尖子生时时关注,不断鼓励。对学习上有困难的学生,更要多给一点热爱、多一点鼓励、多一点微笑。关爱学生,激起学习。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。

心理教育,助长学习成绩。学好数学,除了智力因素以外,还有非智力因素特别是心理方面,一些同学害怕学不好数学,或者以前数学成绩一直不好,现在也一定学不好等,我们采用了个别交流学习方法、学习心得等,告诉学生只要做好老师上课讲解的,课后加强领会、总结,一定会有进步的,不断关怀、帮助、指导,学生积极性提高,问的问题也多了起来,学习成绩也渐渐提高了。

高三下学期(6)控制时间。一般不要超过40分钟,是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。数学期末总结(3)

这学期我任高三两个班的数学课,高二、三班总人数是68人,总体来看,这两个班的基础不太好,学习习惯也不太好,两极分化,文科生对数学不太感兴趣,特别是我对教材不熟悉,导致我在这学期的备课、上课、备学生等方面很吃力,

虽然是这样,通过我的努力,依据学期初制定的教学,已经完成了这学期的教学任务,下面我对这学期的工作进行一下总结。

(一)在备课方面,我认真钻研教材,注意了解学生,潜心研究教法

这学期的教学内容包括,简单几何体,排列、组合、二项式定理,概率,导数。针对学生基础普遍较,接受比较慢的实际情况,我采取了低起点,小步子的教学方法,根据教材的内容设计课的类型,并对教学过程的程序及时安排,认真写好每一篇教案。每一节课都做到有备而来,每堂课都在课前做好充分准备,课后及时对课上出现的情况进行总结,并认真搜集每节课的知识要点,归纳在一起。在准备课堂练习时,由于我的教学经验不足,备课时需查阅大量的资料,给学生高质量的习题,使每个题都有针对性。由于我是今年才接四班,对于四班的情况不了解,一年以来,我注重和他们的沟通,多和他们谈心,了解他们的学习情况,由于学生对我不太适应,所以在期中考试时成绩不太理想,他们对我的评价不太好,虽然我没有看到最近的学生评价教师的结果,但是我知道他们已经接受了我,并且我也真正的了解了他们。

(二)增强上课的技能,提高教学质量

在讲课时,尽量使讲解清晰化,使课堂教学的内容条理化,做到课堂结构清晰,重点、难点突出。在课堂上,特别注意调动学生的主观能动性,加强师生交流,充分体现学生的主体作用和老师的主导作用,

尽量让学生学得容易,学得轻松愉快;注意习题的数量和质量,精讲精练,在课堂上老师尽量讲的少,学生思考和练习的多。同时在每一堂课上都充分考虑每个层次的学生的学习需求和学习能力,让每个层次的学生都得到提高。组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置适量的课下作业。

(三)批改作业、辅导学生与考试评价方面

我们知道“批改作业、辅导学生与考试评价方面”是六项教学常规中的三项,也是我们平时教学工作的重点。多年来,我一直很注重这几方面的工作。这学期我按着学校的要求每星期让学生作业。在教学中,我要求学生把在做作业中,犯下的错误一一记录下来,然后再一个个整理在错题本上,我很明白地告诉学生,如果你要抄袭作业的话,请你不要上交。因为我们让学生作业的目的是让学生把学习中的问题暴露无遗,否则你的教学辅导就没有了针对性。在布置课下练习方面,我一直坚持要求学生每天做一页练习,并且不定时检查,因为我发现我们的学生太不注重课后的复习和巩固,这样强制性的要求会使中等的学生有所提高,效果很好。要提高教学质量,还要做好课后辅导工作,利用每周的晚自习,进行集体辅导,在第八节课和课活时间进行个别辅导。

我们的学生基础,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,多和他们交流,课下找他们了解学习情况等。从鼓励着手,所有的人都渴望得到别人的理解和尊重,所以,和生交谈时,对他的处境、想法表示深刻的理解和尊重,但是对于不能按质按量完成练习和作业的学生,做到惩罚有度。在复习备考这段时间内,利用有限的时间,给学生准备了大量的复习题,并且精讲精练,使学生有很大的提高,在复习课上学生学习热情很高,学习氛围很浓,很多学生都有所提高。

(四)虚心向有经验的教师请教

这学期我按着学校的要求,听课15节,积极的向有经验的老师学习,向他们请教,使得我的教学工作有了新的提高,在此要向给予帮助的老师表示感谢,在今后的工作中继续这样做,使我的教学工作再上新台阶。

(五)在工作中存在的不足

在工作中存在着一些不尽如人意的地方,如对教材不够熟悉,对教材中的重点和难点把握的不好,对于学生也不够有耐性,在辅导中还缺乏经验。

一年的工作即将过去,我会一如既往的努力工作,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量。

我精心

高考数学高考知识点分布频率

高考数学高考知识点分布频率介绍如下:

高考数学的知识点分布频率是众多考生关注的重点,这关乎到复习的优先次序和精力分配。根据历年真题和考点分析,各科目的考点分布如下:

1. 数列:数列知识点比较集中,通常高考不会与其他知识点交叉。基本就是考一问求通项,二问求和良好的知识结构是高效应用知识的保证。以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,融会代数、三角、立几、解析几何于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。如面对代数中的“四个二次”:二次三项式,一元二次方程,一元二次不等式,二次函数时,以二次方程为基储二次函数为主线,通过联系解析几何、三角函数、带参数的不等式等典型重要问题,建构知识,发展能力。,最值问题出现频率较低。

2. 三角函数:涉及的板块很多,但恒等变换是基础,基础公式必须熟练掌握。

3. 概率统计:包括概率与统计两部分,共计约占总分的四分之一。具体来说,概率部分常考题型为概率计算、概率分布、条件概率等;统计部分主要考查数据的描述和推断。

4. 解析几何:此部分主要考查直线、圆的性质和方程,以及它们之间的相互关系。

5. 立体几何:主要考查空间图形的性质和计算,如体积、表面积等。

6. 导数与微分:涉及函数的极值、单调性、最值等问题。

7. 不等式:主要考查不等式的解法和应用。

8. 复数和向量:这两部分在高考中占比较小,通常以选择题或填空题的形式出现。

总的来说,高中数学体系包括概率分布共计22分, 一、加强集体备课,优化课堂教学考了两道选择题各5分和一道简答题12分;其他部分共计10分,一道复数选择题5分,一道向量填空题5分。因此,在复习过程中,应特别重视这些重点知识和高频考点,同时也不能忽视其他部分的复习。


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看