棣莫弗公式适用于高考吗 棣莫夫定理
数学竞赛课程高中
新增知识点:无A. 高中数学竞赛应如何从初三开始准备练习哪一部分
棣莫弗公式适用于高考吗 棣莫夫定理
棣莫弗公式适用于高考吗 棣莫夫定理
棣莫弗公式适用于高考吗 棣莫夫定理
首先你需要快速学习高中必修课本。因为竞赛的学习是建立在熟练掌握高中数学基础上的。专
高中数学课程属的书籍有两种,通用人教版和本地的数学教材。
以人教版为例,需要学习必修全部,及选修2-1,2-2,2-3。其他地区的教材也可以参照以下知识点从最基础的开始学习:函数、三角、导数、不等式、立体、解析、概率。
可以按照教材的课程顺序学习,学习课本的同时还要参考教辅材料,以免会遗漏部分知识点。
熟悉教材之后,技巧的运用也很重要。对于高考知识和解题技巧要做到融会贯通,如果实在不能学透整体的知识构架,也要把基本用法学会。
比较的教材是《奥数教程》,这套书分高一、高二、高三三个年级,每个年级包括奥数教程、奥数教程能力测试(习题)和奥数教程学习手册(习题)三册。
这套书系统地梳理了高中竞赛知识,每讲都有知识要点和基本方法总结、例题精讲及配套的练习,比较适合刚接触竞赛的学生使用。一试学习可以以高一、高二册的内容为主。
B. 高中数学竞赛学习数论组合要看哪一本
数论部分书目
(1)《初等数论》潘承洞潘承彪
(2)《华章数学译丛·数论概论》约瑟夫H.西尔弗曼
(3)《整数与多项式》冯克勤、余红兵
(4)《初等数论难题集》(共两卷)刘培杰
(5)《数学奥赛辅导丛书(第二辑)·初等数论》王慧兴
(6)《高中数学竞赛课程讲座·初等数论》中等数学编辑部
(7)《高中数学竞赛解题策略·数论分册》杨樟松
(8)《高中数学竞赛专题讲座·初等数论》边红平
(9)《命题人讲座·初等数论》冯志刚
(10)《奥赛经典·奥林匹克数学中的数论问题》沈文选张垚冷岗松
(11)《数学奥赛辅导丛书(第二辑)·不定方程》单墫、余红兵
(12)《基础数论典型题解300例》曾荣、王玉
(13)《数论导引》华罗庚
(14)《算术探索》高斯
组合部分书目
(1)《命题人讲座·组合几何》田廷彦
(2)《命题人讲座·图论》任韩
(3)《命题人讲座· 与对应》单墫
(4)《命题人讲座·组合问题》刘培杰、张永芹
(5)《数学奥赛辅导丛书(第二辑)·趣味的图论问题》单墫
(6)《高中数学竞赛课程讲座·组合数学》中等数学编辑部
(7)《高中数学竞赛解题策略·组合分册》
(8)中数学竞赛专题讲座·组合构造》冯跃峰
(9)《高中数学竞赛专题讲座·组合问题》王建中
(10)《高中数学竞赛专题讲座·染色与染色方法》王慧兴
(11)《奥赛经典·奥林匹克数学中的组合问题》沈文选张垚冷岗松
(12)《数学奥赛辅导丛书(第二辑)·组合几何》单墫
(13)《数学奥林匹克小丛书·高中卷1、13》刘诗雄等
(14)《中学生数学思维方法丛书》(12本)冯跃峰
(15)《数学奥赛辅导丛书(辑)·1、13》
(16)数林外传系列大量代数方面的专题科普书籍,其中如巧用抽屉原理等是比较不错的
C. 高中数学竞赛课程跟不上怎么办
不要着急,学习是急不来的,下面介绍一些学习方法:
课前预习:一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以提前了解将要学习的知识,不至于到课上手足无措,加深听课时的理解,从而能够很快的吸收新知识。
记笔记:这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来深理解,好记性不如烂笔头吗,二来可以方便以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。
课后复习:同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以学习和消化所学知识,需要在课下进行大量的练习与巩固,才能真正掌握所学知识。
涉猎课外习题:想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。学会归类总结:学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少记忆量,同时提高做题效率。
D. 高中数学竞赛怎样学习
高中数学课程的书籍有两种,通用人教版和本地的数学教材。
以 人教版 为例版,需要学习 必修权全部 ,及 选修2-1,2-2,2-3 。其他地区的教材也可以参照以下知识点从最基础的开始学习: 函数、三角、导数、不等式、立体、解析、概率 。
可以按照教材的课程顺序学习,学习课本的同时还要参考教辅材料,以免会遗漏部分知识点。
E. 高中数学奥赛一试的比较好的书有哪些
奥数教程 ,很经典抄的数学竞赛基础学袭习书籍,三个年级都有教程+学习手册+能力测试,合计共九本。主要是看教程,其余视自己需要而定。
高中数学竞赛培优教程 ,很多人用的一试及二试基础学习书籍,内容不多,也相对比较简单,非常适合系统性学习竞赛。这类型的书籍,可以多用几本反复练习吸取每本书的精华,也可以单挑一个系列吃透。
高中数学竞赛课程讲座 ,这套书也比较适合数学竞赛的轮学习,相比小丛书内容更全面一些。很难买到,且质量参不齐——有些还不到联赛难度,看了收获比较小;有些专题又很不错,内容比较细致。如需使用这套书,建议单本购买自己想要的专题。
F. 高中有哪些数学竞赛
高中数学竞赛大纲(2006年修订试用稿)
数学会普及工作委员会制定
(2006年8月第14次全国数学普及工作会议讨论通过)
从1981年数学会普及工作委员会举办全国高中数学联赛以来,在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,每年一次的竞赛活动吸引了广大青少年学生参加。1985年我国又步入数学奥林匹克殿堂,加强了数学课外教育的交流,20年来我国已跻身于数学奥林匹克强国之列。数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。数学竞赛的教育功能显示出这项活动已成为中学数学教育的一个重要组成部分。
为了使全国数学竞赛活动持久、健康地发展,数学会普及工作委员会于1994年制定了《高中数学竞赛大纲》。这份大纲的制定对高中数学竞赛活动的开展起到了很好的指导作用,使我国高中数学竞赛活动日趋规范化和正规化。
近年来,课程改革的实践,在一定程度上改变了我国中学数学课程的体系、
内容和要求。同时,随着国内外数学竞赛活动的发展,对竞赛试题所涉及的知识、思想和方法等方面也有了一些新的要求。为了使新的《高中数学竞赛大纲》能够更好地适应高中数学教育形势的发展和要求,经过广泛征求意见和多次讨论,数学会普及工作委员会组织了对《高中数学竞赛大纲》的修订。
本大纲是在2000年《全日制普通高级中学数学教学大纲》的精神和基础上制定的。该教学大纲指出:“要促进每一个学生的发展,既要为所有的学生打好共同基础,也要注意发展学生的个性和特长;……在课内外教学中宜从学生的实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。”
学生的数学学习活动应当是一个生动活泼、富有个性的过程,不应只限于接受、记忆、模仿和练习,还应倡导阅读自学、自主探索、动手实践、合作交流等学习数学的方式,这些方式有助于发挥学生学习的主动性。教师要根据学生的不同基础、不同水平、不同兴趣和发展方向给予具体的指导。教师应学生主动地从事数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学的思想和方法,获得广泛的数学活动经验。对于学有余力并对数学有浓厚兴趣的学生,教师要为他们设置一些选学内容,提供足够的材料,指导他们阅读,发展他们的数学才能。
2000年《全日制普通高级中学数学教学大纲》中所列出的内容,是教学的要求,也是竞赛的基本要求。在竞赛中对同样的知识内容,在理解程度、灵活运用能力以及方法与技巧掌握的熟练程度等方面有更高的要求。“课堂教学为主,课外活动为辅”也是应遵循的原则。因此,本大纲所列的内容充分考虑到学生的实际情况,旨在使不同程度的学生都能在数学上得到相应的发展,同时注重贯彻“少而精”的原则。
全国高中数学联赛
全国高中数学联赛(一试)所涉及的知识范围不超出2000年《全日制
普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试
全国高中数学联赛加试(二试)与数学奥林匹克接轨,在知识方面有所
扩展;适当增加一些教学大纲之外的内容,所增加的内容是:
1.平面几何
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数
周期函数,带的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定删减知识点:无理,多项式的相等,整系数多项式的有理根,多项式的插值公式。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程
3.初等数论
同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理。,孙子定理。
4. 组合问题
圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
的划分。
覆盖。
平面凸集、凸包及应用。
注:有号的内容加试中暂不考,但在冬令营中可能考!
G. 高中数学竞赛该看些什么辅导书
高中数学联赛考前辅导 ,这本书当教材就好,内容少而精,适合巩固竞赛基础知内识。
高中数学竞赛课容程讲座 几何问题/初等代数/初等数论/组合数学/原创题集 《中等数学编辑部》
这些每本书都是由各种不同的作者写的小专题汇编而成,所以不同章节的难度别可能很大。但其中不少章节都写的很有新意,读来也会有不少收获。整体难度不大、内容不多但还算全面。
H. 高中数学竞赛自学辅导书
先巩固高中数学来基础,自能够应对高中数学知识体系下的困难题,这就解决了一试;然后就是重点攻克二试的四个模块,根据自己的目标高低是能完整学完某几个模块的知识和题型。
人教版高中数学教材B版必修+选修
《五年高考三年模拟》B版,或类似的总复习教辅书
最近一年各地的高考题套题一本
还需要学习必修全部,及选修2-1,2-2,2-3。其他地区的教材也可以参照以下知识点从最基础的开始学习:函数、三角、导数、不等式、立体、解析、概率。
可以按照教材的课程顺序学习,学习课本的同时还要参考教辅材料,以免会遗漏部分知识点。
上面的都是入门数学竞赛的书籍,在进入数学竞赛学习之后,需要进行一试的学习。
《奥数教程》熊斌、冯志刚,及配套学习手册
《高中数学竞赛培优教程》一试+专题讲座 李胜宏 李名德
《奥赛经典分级精讲与测试系列》高一/高二/高三数学 沈文选 唐立华
《更高更妙的高中数学思想与方法》蔡小雄
I. 高中数学竞赛有没有网络课程有的话,哪个网站比较好
我当年的经历是,从历年的真题入手,把题目大概进行归类,比较数列,解析几何内,三角函数等容等,分类好了再以专题形式来学习,如果你对于某个类错误率比较高的话,再进行特训。同时做题时做好笔记,答题规范,养成好的书写写过,思路严谨,这样你将会有很大的收获!祝愿你如愿以偿!!
J. 如果初中没有学习数学竞赛,高中学有用吗
或者你想获得保抄送和自主招生的机会
如果只是想把高考考好
建议你不要学竞赛
把考试范围内的内容学扎实
在高中课程中,老师也会偶尔提及竞赛知识
当然那是对你有帮助的补充:
如果初中没学
高中学也是可以的
初高中的数学思想是不一样的补充:
一般只要你掌握了一些通法
遇到某类题目你都顺着一个方向想
然后就是要勇敢的计算高中数学计算是很复杂的这些没问题救ok了
正态分布概率表是什么?
5. 了解任意项级数收敛与条件收敛的概念以及收敛与收敛的关系.正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由棣莫弗(Abraham de Moivre)在求二项分布的渐近公式中得到。C.F.高斯在研究测量误时从另一个角度导出了它。
P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
定理:
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它三、二维随机变量及其分布(改为“随机变量及其分布”)求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
若服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)
数学1和数学2
考试要求2006考研数学大纲变化(完全版)
熟悉教材之后,技巧的运用也很重要。对于高考知识和解题技巧要做到融会贯通,如果实在不能学透整体的知识构架,也要把基本用法学会。需要注意的是,学完课内知识不是目的,最重要的是能达到高考水平。数学一
高等数学
一、函数、极限、连续
(一)考试内容的变化
调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立”
考试要求没有变化
二、一元函数微分学
(一)考试内容的变化
调整知识点:将“基本初等函数的导数导数和微分的四则运算”调整为“导数和微分的四则运算基本初等函数的导数”
1.考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。
2.将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。
三、一元函数积分学
(一)考试内容的变化
新增知识点:增加了“用定积分表达和计算质心”
调整知识点:无
考试要求没有变化
四、向量代数和空间解析几何
五、多元函数微分学
六、多元函数积分学
(一)考试内容的变化
调整知识点:将“二重积分、三重积分的概念及性质二重积分、三重积分的计算和应用”调整为“二重积分与三重积分的概念、性质、计算和应用”
考试要求没有变化
七、无穷级数
八、常微分方程
(一)考试内容的变化
调整知识点:无
考试要求中将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念”
线性代数
一、行列式
二、矩阵
三、向量
(一)考试内容的变化
调整知识点:无
考试要求中将“4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系”调整为“理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系”
四、线性方程组
五、矩阵的特征值和特征向量
六、二次型
(一)考试内容的变化
调整知识点:无
考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法”
概率论与数理统计
一、随机和概率
(一)考试内容的变化
调整知识点:
(1)将“二维随机变量及其概率分布”调整为“随机变量及其分布”;
(2)将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度”;
(3)将“两个随机变量简单函数的分布”调整为“两个及两个以上随机变量简单函数的分布”
(1)将“1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质”调整为“1.理解随机变量的概念,理解随机变量的分布的概念和性质”,
(2)将“2.理解随机变量的性及不相关的概念,掌握离散型和连续性随机变量的条件”调整为“2.理解随机变量的性及不相关性的概念,掌握随机变量相互的条件”,
(3)将“4.会求两个随机变量简单函数的分布”调整为“4.会求两个随机变量简单函数的分布,会求多个相互随机变量简单函数的分布”
四、随机变量的数字特征
五、大数定律和中心极限定理
(一)考试内容的变化
调整知识点:无
(1)将“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(同分布随机变量的大数定律)”调整为“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(同分布随机变量序列的大数定律)”;
(2)将“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(同分布的中心极限定理)”调整为“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(同分布随机变量序列的中心极限定理)”
六、数理统计的基本概念
七、参数估计
(一)考试内容的变化
调整知识点:无
八、设检验
(一)考试内容的变化
调整知识点:无
将“2.了解单个及两个正态总体的均值和方的设检验”调整为“2.掌握单个及两个正态总体的均值和方的设检验”
数学二
高等数学
一、函数、极限、连续
(一)考试内容的变化
调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立”
考试要求没有变化
二、一元函数微分学
(一)考试内容的变化
调整知识点:将“基本初等函数的导数导数和微分的四则运算”调整为“导数和微分的四则运算基本初等函数的导数”
1.考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。
2.将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。
三、一元函数积分学
(一)考试内容的变化
新增知识点:增加了“用定积分表达和计算质心”
调整知识点:无
考试要求没有变化
四、多元函数微积分学
五、常微分方程
(一)考试内容的变化
调整知识点:无
考试要求中将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念”
线性代数
一、行列式
二、矩阵
三、向量
(一)考试内容的变化
新增知识点:向量的内积线性无关向量组的正交规范化方法
调整知识点:无
考试要求中增加“5.了解内积的概念,掌握线性无关向量组的正交规范化的施密特(Schmidt)方法”
四、线性方程组
五、矩阵的特征值和特征向量
(一)考试内容的变化
调整知识点:无
1.将“2.了解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”调整为“2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”
2.将“3.了解实对称矩阵地特征值和特征向量的性质”调整为“3.理解实对称矩阵地特征值和特征向量的性质”
数学三
微积分
一、函数、极限、连续
(一)考试内容的变化
调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立”
1.考试要求中将“9.了解连续函数的性质合初等函数的连续性,了解闭区间上连续函数的性质(有界性、值和最小值定理、介值定理)及其简单应用”调整为“9.了解连续函数的性质合初等函数的连续性,理解闭区间上连续函数的性质(有界性、值和最小值定理、介值定理),并会应用这些性质”
二、一元函数微分学
(一)考试内容的变化
调整知识点:将导数的概念及运算法则与微分的概念及运算法则合并
1.考试要求中“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法”调整并合并为“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数”。
三、一元函数积分学
四、多元函数微积分学
五、无穷级数
(一)考试内容的变化
新增知识点:线性微分方程解的性质及解的结构定理
调整知识点:无
线性代数
一、行列式
二、矩阵
三、向量
(一)考试内容的变化
调整知识点:无
考试要求中将“4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系”调整为“理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系”
四、线性方程组
五、矩阵的特征值和特征向量
六、二次型
(一)考试内容的变化
调整知识点:无
考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法”
概率论与数理统计
一、随机和概率
三、随机变量及其分布
(一)考试内容的变化
调整知识点:将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度”
1.考试要求中将“2.理解随机变量的性及不相关的概念,掌握离散型和连续性随机变量的条件”调整为“2.理解随机变量的性及不相关性的概念,掌握随机变量相互的条件”
四、随机变量的数字特征
五、大数定律和中心极限定理
六、数理统计的基本概念
七、参数估计
八、设检验
(一)考试内容的变化
调整知识点:无
1.将“2.了解单个及两个正态总体的均值和方的设检验”调整为“2.掌握单个及两个正态总体的均值和方的设检验”
数学四
微积分
一、函数、极限、连续
(一)考试内容的变化
调整知识点:无
1.考试要求中将“9.了解连续函数的性质合初等函数的连续性,了解闭区间上连续函数的性质(有界性、值和最小值定理、介值定理)及其简单应用”调整为“9.了解连续函数的性质合初等函数的连续性,理解闭区间上连续函数的性质(有界性、值和最小值定理、介值定理),并会应用这些性质”
二、一元函数微分学
(一)考试内容的变化
调整知识点:将导数的概念及运算法则与微分的概念及运算法则合并
1.考试要求中将原来的“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法”调整并合并为“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数”。
2.将“9.掌握函数作图的基本步骤和方法,会作简单函数的图形”调整为“9.会作简单函数的图形”。
三、一元函数积分学
四、多元函数微积分学
(一)考试内容的变化
调整知识点:将“区域上简单二重积分的计算”调整为“区域上的广义二重积分”
1.考试要求中将“5.……会计算区域上的较简单的二重积分”调整为“5.……了解区域上的较简单的广义二重积分并会计算”
五、常微分方程
线性代数
一、行列式
二、矩阵
三、向量
四、线性方程组
五、矩阵的特征值和特征向量
概率论与数理统计
一、随机和概率
三、随机变量及其分布
(一)考试内容的变化
1.新增知识点:无
2.调整知识点:将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度”
3.删减知识点:无
1.考试要求中将将“2.理解随机变量的性及不相关的概念,掌握随机变量的条件”调整为“2.理解随机变量的性及不相关性的概念,掌握随机变量相互的条件”
四、随机变量的数字特征
五、中心极限定理
数学2不考概率论与数理统计,
请问考研数学三考啥啊?
无变化考研数学三大纲考试科目微积分、线性代数、概率论与数理统计考试形式和试卷结构考试形式和试卷结构
得x=(-1)^2=1得1=-1不可能成立 这题目就没有探究的必要了数学三包括了:微积分、线性代数、概率论与数理统计。它常被称为经济数学适用于1、经济学门类的应用经济学一级学科中统计学、数学经济学二级学科、专业。2、管理学门类的一级学科中企业管理、技术经济及管理二级学科、专业。3、管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业。它是最基础的内容,比数学一简单。更多考研方面的知识你可以到我的空间里看哦。。。加油
高等数学微积分,线性代数,概率论和数理统计。回答完毕。
考研数学一大纲的内容与要求
函数极限连续
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、值和最小值定理、介值定理),并会应用这些性质.
一元函数微分学
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当f''(x)>0 时,f(x) 的图形是凹的;当f(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
一元函数积分学立体几何
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
向量代数和空间解析几何
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
93.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程..了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
多元函数微分学
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的值和最小值,并会解决一些简单的应用问题.
多元函数积分学
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).
无穷级数
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与 级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.
7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
9.了解函数展开为泰勒级数的充分必要条件.
10.掌握 , , , 及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.
常微分方程
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
4.会用降阶法解下列形式的微分方程: .
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题. 章:行列式
考试内容:
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求:
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
第二章:矩阵
考试内容:
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算
考试要求:
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.
第三章:向量
考试内容:
向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求:
1.理解n维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
5.了解n维向量空间、子空间、基底、维数、坐标等概念.
6.了解基变换和坐标变换公式,会求过渡矩阵.
7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.
第四章:线性方程组
考试内容:
线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
第五章:矩阵的特征值及特征向量
考试内容:
矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵
考试要求:
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
第六章:二次型
考试内容:
二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求:
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法 章:随机和概率
考试内容:
随机与样本空间 的关系与运算 完备组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 的性 重复试验 考试要求:
1.了解样本空间(基本空间)的概念,理解随机的概念,掌握的关系与运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
3.理解的性的概念,掌握用性进行概率计算;理解重复试验的概念,掌握计算有关概率的方法.
第二章:随机变量及其分布
考试内容:
随机变量 随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求:
1.理解随机变量的概念.理解分布函数
的概念及性质.会计算与随机变量相联系的的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布
及其应用,其中参数为λ(λ>0)的指数分布的概率密度为
5.会求随机变量函数的分布.
第三章:随机变量及其分布
考试内容
随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度
随机变量的性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
1.理解随机变量的概念,理解随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关的概率.
2.理解随机变量的性及不相关性的概念,掌握随机变量相互的条件.
3.掌握二维均匀分布,了解二维正态分布
的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互随机变量简单函数的分布.
第四章:随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方、标准及其性质 随机变量函数的数学期望 矩、协方、相关系数及其性质
1.理解随机变量数字特征(数学期望、方、标准、矩、协方、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2.会求随机变量函数的数学期望.
第五章:大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(同分布随机变量序列的大数定律) .
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(同分布随机变量序列的中心极限定理) .
第六章:数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
1.理解总体、简单随机样本、统计量、样本均值、样本方及样本矩的概念,其中样本方定义为:
2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.
3.了解正态总体的常用抽样分布.
第七章:参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 似然估计法 估计量的评选标准 区间估计的概念单个正态总体的均值和方的区间估计两个正态总体的均值和方比的区间估计
1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和似然估计法.
3.了解估计量的无偏性、有效性(最小方性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4.理解区间估计的概念,会求单个正态总体的均值和方的置信区间,会求两个正态总体的均值和方比的置信区间.
第八章:设检验
考试内容
显著性检验设检验的两类错误 单个及两个正态总体的均值和方的设检验
1.理解显著性检验的基本思想,掌握设检验的基本步骤,了解设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方的设检验
为什么棣莫弗公式θ不加2kπ 另一个缺要
(二)考试要求的变逆向顺向做旋转,伸缩全年模长短。化cos(θ+2k派)=cosθ,sin(θ+2k派)=sinθ,当k是整数的时候,不管k取何值这两个式子都是成立的,所以公式里没必要加2kπ
如果k小数,分数就不行了,这两个式子不成立
复数可以用e表示吗?
指数与对数函数,两者互为反函数。复数可以用e表示。
我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复还有重要不等式,以及数学归纳法。数有几种表示形式
常用的有三角函数表示形式:
A=a+bj
A=|A|cosθ+|A|jsinθ(此处|A|是A的模值)
θ=arctan(b/a)
三角函数形式用欧拉公式可以推导得出e的形式:
A=|A|e^jθ
高中数学总结?
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.高中数学公式口诀
一、《与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。 公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用 1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。求与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。 五、《复数》 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。 辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。 六、《排列、组合、二项式定理》 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,杨辉三角形。两条性质两公式,函数赋值变换式。 七、《立体几何》 点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
高中《立体几何》
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。 八、《平面解析几何》 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称。 笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
买本“32'自己看二、随机变量及其分布吧
太多了
众所周知当x^2=-1时,==〉x=i;那当x^(1/2)=-1时,x=?
六、常微分方程与分方程注意:对复数进行幂运算时,指数仅限于整数。当指数是分数时,虚数的分数指数幂没有意义.
所以,x^(1/2)、(i^4)^(1/2)等都没有意义, 更不适用常用的“幂的运算性质”。
其实,即使是实数的分数指数幂,也不可以随意运算。如
-1=(-1)^(1/3)=(-1)^(2/6)=[(-1)^2]^(1/6)=1^(1/6)=1显然矛盾!
1、方程x^2=-1在复数集中有两个解i和-i.你漏掉了一个解。我们规定 i=根号-1,是说i是-1的平方根之一。
复数开方用三角公式非常方便(如果你学了指数式更方便),开方公式如下:
z=r(cosa+isina),则z^(1/n)=r^(1/n){cos[(a+2kπ)/n]+isin[(a+2kπ)/n]},k=0,1,2,……,n-1.
2、方程x^(1/2)=-1无解,因为平方得x=(-1)^2=1,但1^(1/2)=1,矛盾。
3、(i^4)^(1/2)有两个解1和-1,所以(1)(2)都正确。由上面公式容易验证。另外复数开方应按公式来做。
首先,“x^2=-1时,==〉x=i”是错误的将“4.了解区间估计的概念”调整为“4.理解区间估计的概念”,应当得到x=±i才对。
其次,“x^(1/2)=-1”这种式子是不会出现的。因为,如果x为正数,则x^(1/2)的值为一正实数;如果x=0,则x^(1/2)的值为0;如果x为负数,则x^(1/2)的值就是一个虚数,而不是负数。
再次,设我们给x^(1/2)=-1一个定义,其解为虚数。那么反过来也就是说(-1)^2的值不再为1,而是等于一个虚数了,这与(-1)^2=1是矛盾的。
综上所述,x^(1/2)=-1不成立,而不是数学家对它有偏见,也不是完全忽略了这个问题。
但 数学家对它有偏见,还是说完全忽略了这个问题
我不同意
因为这样的话就有太多数要表示了
i^2=-1
j1^2=i
j2^2=j1
j3^2=j2
j4^2=j3
太麻烦了
意义也不大
楼上的,你还总监呢,你太监不多,没学过复数不要乱说,你楼上的说的没错,复数的运算法则和实数不同^-^
你想的太多了
两边平方
x^2=-1???
为什么平方数可以为负数
--小学水平?
x^2=-1???
为什么平方数可以为负数
高考数学重点知识顺口溜
6.了解函数项级数的收敛域及和函数的概念.【 #高考# 导语】高中的数学学习主要目的是训练学生的思维能力!对于很多数学成绩的学生来说,学习数学就是一种折磨。其实,数学在高中的科目中并不是最难的,只要找到正确的学习方法,学习起来就会比较轻松。 给大家分享一位数学总结的基础知识顺口溜分享给大家,包含了整个高中数学的知识点,运用口诀的方法帮助学生进行记忆。
……数学思想方法总结
中学数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲。
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边。
一线:函数一条主线(贯穿教材始终)
二珠:代数、几何珠联璧合(注重知识交汇)
三基:方法(熟)知识(牢)技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)
五法:换元法、配方法、待定系数法、分析法、归纳法。
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。
七思想:函数方程最重要,分类整合常用到,
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高。
数学知识方法口诀
与函数
内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,
若要详细证明它,还须将那定义抓。
底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,
偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;
其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;
图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象象限内,函数增减看正负。
三角函数
三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;
向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。
和化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,
保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和积。
条件等式的证明,方程思想指路明。
公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,
幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集;
不等式
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
图形函数来帮助,画图建模构造法。
数列
等等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算,
数列求和比较难,错位相消巧转换。
取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:
首先验证再定,从K向着K加1,
推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和是由积商得。
四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
排列、组合、二项式定理
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,杨辉三角形。
两条性质两公式,函数赋值变换式。
概率与统计
概率统计同根生,随机发生等可能;
互斥一枝秀,相互同时争。
样本总体抽样审,重复二项分;
随机变量分布列,期望方论伪真。
点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
平面解析几何
有向线段直线圆,椭圆双曲抛物线,
参数方程极坐标,数形结合称。
笛卡尔的观点对,点和有序实数对,
两者一一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;
都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,
给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;
平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。
随便看看
- 2025-04-22 学美甲的学费一般是多少?大概要多少钱
- 2025-04-22 武汉城市理工学校 武汉城市理工学校在哪
- 2025-04-22 留学生隔离完被亲妈拒之门外_留学生回国
- 2025-04-22 将军家的小娘子免费观看全集_将军家的小
- 2025-04-22 宝安职业学校 宝安职业学校有什么专业