matlabmax函数用法_matlab中max的作用
值原理
end值,即为已知的数据中的的一个值,在数学中,常常会求函数的值,一般求解方法有换元法、判别式求法、函数单调性求法、数形结合法和求导方法。
matlabmax函数用法_matlab中max的作用
matlabmax函数用法_matlab中max的作用
中文名
值
外文名
The maximum value
数学
Matlab
MAX()函数
基本释义
已知数据中的的值
导航
存在性
一般求解方法
示例
1、根据时间和速度的数据,用plo函数绘制其趋势图,判断是符合什么类型的数学模型(如:(v(t)=a0+b0t)方法
介绍
值,即为已知的数据中的的一个值。一般可以通过排序比较求出。
存在性
若函数 在 上连续,则 在 上一定有、最小值。[1]
一般求解方法
若函数 的(最小)值点 在区间[a,b]内,则 必定是 的极大(小)值点。又若 在 可导,则还是一个稳定点。所以,一般只要比较 在所有稳定点、不可导点和区间端点上的函数值,就能从中找到 在 上的值和最小值。[1]
示例
求函数 在闭区间 上的值。
解:若函数 在闭区间 连续,故必存在值。由于
因此
又因 ,所以由导数极限定理推知函数在 处不可导,求出函数 在稳定点 ,不可导点 ,以及端点 的函数值:
所以函数 在 和 处取得值。[1]
方法
用换元法求最值主要有三角换元和代数换元,用换元法要特别注意中间变量的范围。较为常见的是以下两种形式的换元:[2]
1) ,令 将y化为t的二次函数
2) ,令 将y化为t的二次函数,再求最值
判别式求最值
主要适用于可化为关于自变量的二次方程的函数
函数单调性
先判定函数在给定区间上的单调性,而后依据单调性求函数的最值
数形结合
主要适用于几何图形较为明确的函数,通过几何模型,寻找函数最值。
求导方法
求函数 在 上的最值
1)找出 在 内所有可能的极值点,即计算得到的各列元素的积如下:驻点和一阶不可导点
2)找出在上述点和两个端点 和处的函数值
3)将函数值进行比较,者即为值。[3]
max函数为Matlab中求值的函数,格式如下:[4]
M = max(A,[],dim) %返回数组A中维度dim的的元素
[M,I] = max(___)
C = max(A,B)
参考资料
[1] 华东师范大学数学系.数学分析上册(第三版).:高等教育出版社,2001年
[2] 孙兰敏. 函数值及最小值的求法[J]. 衡水学院学报, 2009, 11(1):7-8.
[3] 张程, 梁海峰, 尧雪莉.高等数学学习指导.水利水电出版社,2017
如何用MATLAB对速度求导得加速度?
Y1 =题主既然有了【时间,速度】的一系列数据,要求加速度及加速度图。题主可以参考下列步骤来解决:
表5.1 求向量值、最小值函数3、根据时间和速度的数据,使用lsqcurvefit或nlinfit等拟合函数,求出其系数a0、b0
-0.12014、得到v(t)表达式后,可以用diff函数求导,得到该加速度a(t)表达式
5、将已知t时间值,计算加速度值
6、用max函数求出加速度,用mean函数求出平均加速度
7、用plot函数绘出速度图和加速度图
8、由于没有具体数据,所以无法提供运行结果。
怎么在matlab中求解有两个变量的函数的最值
% (1)若参数output=iterations表示迭代次数,用meshgrid
M = max(A) %返回数组A中的元素r = -1:0.01:0.15;
或者你先find一次,然后将位置的值去掉或者设成Nan之前的数。但如果有多个并列或第二,你的结果自己得注意一下。k = 5:0.1:100
[R,K] = meshgrid(r,k);
m = ((108-8R.^3+12(81-12R.^3.K).^(1/2)).K^2).^(1/3)
max(m)
或者用智能寻优算法
matlab中,如何确定向量中第二大数的位置
MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。你不想添加数组的话,
也可以,用sort和find联合。
aa=sort(a);
find(a=归属学科=aa(end-1))
采用函数subpl0.5226 0.1730 0.0118 0.19ot(N,M,NM)
N为窗口水平分割的图像数目,M为窗口竖直分割的图像数目,后面的NM为第几个图像
例如:
x=[1:10];
subplot(211)
plot(x,y,'r')
subplot(212)
plot(x,2y,'m')
matlab 如何求函数最小值
MAX函数>> [x,fval] = fminbnd('xsin(2x-1)',0,2)
x =
0.2601
fval =
当x取0.2601时,函数有最小值-0.1201
当然是近似值
clc;clear
x=[42.8,42.9,43,43.1,43.2,43.3,43.4,43.5,43.6,43.7,43.8,43.9,44,44.1,44.2,44.3,44.4,44.5,44.6,44.7];
y=[23265,23029,22907,22668,22264,22083,22112,22096,21864,21742,21733,21844,21787,21756,21838,21984,21971,21876,21879,21996];
p2=polyfit(x,y,2)
xx=min(x):0.1:max(x);
yy=polyval(p2,x);
Y=vpa(poly2sym(p2,'x'),6)%转化为多项式格式
Y1=diff(Y)%求一阶导数
Xmin=eval(solve(Y1))0.5478 -0.9397 1.0000 -0.3984%一阶导数等于零,极值点
Ymin=polyval(p2,Xmin)
plot(x,y,'o',xx,yy,Xmin,Ymin,'')
p2 =
932.1 -82142 1.8314e+006
Y =
932.103x^2-82140.0648 0.0057 0.1780 0.04872.3x+.183145e7
1864.206x-82142.3
Xmin =
44.063
21734
MATLAB编程及应用-第5章 多项式与数据分析
(2)本章将介绍如何使用MATLAB来解决一些基本的数算问题,主要包括多项式的相关计算,数据插值,曲线拟合以及数据统计处理等相关的内容。本章的主要内容如下:
polyfit 函数根据采样点X和采样点函数值Y,返回一个m次多项式P及供polyval使用的结构数组S,S有三个域:S.R给出QR分解后满足Q·R=V的矩阵R,S.df给出相应χ2量的自由度,S.normr给出拟合残数的2—范数。其中X,Y是两个等长的向量,P是一个长度为m+1的向量,P的元素为多项式系数。在MATLAB中,多项式是以行向量的形式存放的,并且约定多项式以降幂的形式出现,如果多项式中缺少某幂次项,则该幂次项的系数为0。例如,多项式 可以表示为:p1=[1 21 20 0],其中常数项为0。
7.27 15.2885 5.4763本节将全面介绍与多项式有关的各种计算,包括多项式的四则运算、导函数运算、求值、求根以及分部展开。
多项式的加减运算并无特别,可以使用向量的加减运算实现。多项式的乘除运算比较复杂,为此MATLAB提供了专门的运算函数 conv 和 deconv 。
函数 conv 用于求多项式P1和P2的乘积,它的调用格式如下:
其中,P1、P2是两个多项式系数向量。
函数 deconv 用于对多项式P1和P2作除法运算,它的调用格式如下:
其中,Q返回多项式P1除以P2的商式,r返回P1除以P2的余式。返回的Q和r仍是多项式系数向量。
可以将除法运算deconv看作是乘法运算conv的逆运算,即有P1=conv(P2,Q)+r。
下面通过示例介绍多项式的表示和多项式的四则运算。
使用函数poly2str显示多项式p1和p2相乘后生成的新多项式,如下所示:
>> poly2str(y,'x') %以比较习惯的方式显示多项式
ans =
2 x^6 + 15 x^5 - 5 x^4 + 24 x^3 - 20 x^2 + 10 x - 30
MATLAB提供了polyder函数,用于求多项式的导函数。该函数的格式如下:
其中,参数P和Q是多项式的系数向量,返回结果p和q也是多项式的系数向量。
MATLAB提供了两种求多项式值的函数:polyval与polyvalm,它们的输入参数均为多项式系数向量P和自变量x,但是两者是有很大区别的,前者是按数组运算规则对多项式求值,而后者是按矩阵运算规则对多项式求值。具体的调用格式如下所示。
>> p3=[2 6 8 0 5 9 4] %生成多项式系数
>> A=rand(3) %生成随机矩阵
①使用函数polyval按数组运算规则求A中的每个元素对于多项式p3的值。在命令窗口中输入如下内容:
>> Y=polyval(p3,A)
运算结果如下:
Y =
5.8986 7.2672 15.8387
5.9409 11.3612 8.3376
②使用函数polyvalm按矩阵运算规则求以方阵A为自变量的多项式p3的值。在命令窗口中输入如下内容:
>> Y1=polyvalm(p3,A)
运算结果如下:
13.6694 21.1448 16.7431
8.7641 22.5846 21.5403
8.4161 19.5396 22.2629
③如果函数polyval和polyvalm的第二个参数为数值,仍然可以按照数组和矩阵的运算规则计算求多项式在该参数下的结果。在命令窗口中输入如下内容:
>> A=3
分别使用函数polyval和polyvalm计算多项式的值,具体作及返回结如下:
>> Y=polyval(p3,A)
Y =
3640
>> Y1=polyvalm(p3,A)
3640
④如果函数ployval和ployvalm的第二个参数为一向量,前者按照数组运算规则仍然可以计算求多项式在该参数下的结果,但是后者按矩阵运算规则计算则会提示错误信息。在命令窗口中输入如下内容:
>> p4=[4 8 0 0 0 3 6]
分别使用函数polyval和polyvalm计算多项式的值,具体作及返回结果如下:
>> Y=polyval(p3,p4) %第二个参数为向量
Y =
16504 754060 4 4 4 3640 150574
??? Error using ==> polyvalm
Matrix must be square.
n次多项式具有n个根,这些根可能是实根,也可能含有若干对共轭复根。MATLAB提供了roots函数用于求多项式的全部根,该函数的调用格式为:
其中,P为多项式的系数向量,返回向量x为多项式的根,即x(1),x(2),…,x(n)分别代表多项式的n个根。
另外,如果已知多项式的全部根,MATLAB还提供了函数poly用来建立该多项式,该函数的调用格式为:
其中,x为多项式的根,返回向量P为多项式的系数向量。
对于一个方阵s,可以用函数poly来计算矩阵的特征多项式的系数。特征多项式的根即为特征值,可以用roots函数来计算。
MATLAB提供函数 residue 可以实现将分式表达式进行多项式的部分分式展开。
对于 ,函数的调用格式如下:
其中,b和a分别是分子和分母多项式系数行向量;返回值r是[r1 r2 …rn]留数行向量,p为[p1 p2 …pn]极点行向量,k为直项行向量。下面通过示例来讲述该函数的使用。
多项式的微分MATLAB提供了函数 polyder 来实现,前面介绍多项式的导函数时已经介绍了该函数的具体使用。但是对于多项式的积分运算MATLAB没有提供专门的函数,但可以用 [p./length(p):-1:1,k] 的方法来完成积分,其中k为常数。下面通过示例讲解如何进行多项式的积分运算。
插值运算是根据数据点的规律,首先找到一个多项式连接这些已知的数据点,然后根据该多项式计算出要得到的与已知数据点相邻的点对应的数值。数据的插值运算在信号和图象处理等领域使用比较广泛。MATLAB提供了专用的函数来处理数据的插值问题,下面将详细的介绍使用这些插值函数的方法。
一维插值是指对一个自变量的插值,实现一维数据插值的函数是interp1,该函数的调用格式为:
interp1函数的功能是根据X,Y的值,计算出在X1处的值,并返回给Y1。其中,X和Y是两个等长的已知向量,分别描述采样点和样本值;X1是一个向量或标量,描述欲插值的点,返回值Y1是与X1等长的插值结果;mod是插值函数的类型,允许的取值有“linear”(线性插值)、“nearest”(用最接近的相邻点插值)、“cubic”(三次插值)和“spline”(三次样条插值),linear为默认值。
除此之外,MATLAB还提供了一个专门的用于3次样条插值的函数spline,功能与函数 Y1=interp1(X,Y,X1,‘spline’) 完全相同,使用方法也类似。该函数的调用格式如下:
除前面介绍的一维数据的插值,MATLAB还提供用于解决二维插值问题的函数 interp2 ,该函数的调用格式为:
其中,X和Y是两个向量,分别描述两个参数的采样点,Z是与参数采样点对应的函数值,X1,Y1是两个向量或标量,描述欲插值的点。返回值Z1是根据相应的插值方法得到的插值结果。mod的取值与一维插值函数相同。X,Y,Z也可以是矩阵形式。
多项式曲线拟合是用一个多项式来逼近一组给定的数据,拟合的准则是最小二乘法,即找出使 的 .
在MATLAB中,用 polyfit 函数来求得最小二乘拟合多项式的系数,计算得到多项式后可以用 polyval 函数计算所给出点的近似值。polyfit函数的调用格式为:
>> Y=polyval(P,x) %根据多项式系数向量计算对应点x处的拟合函数值
即可计算得到拟合多项式在给定点的函数值。
本节介绍数据统计处理方法,包括(小)值运算、求和(积)运算、平均值(中值)运算、累加(乘)运算、标准方、相关系数以及排序运算。
MATLAB提供的求数据序列的值和最小值的函数分别为max和min,两个函数的调用格式和作过程类似,可以分别用来求向量或矩阵的值和最小值。
(1)求向量的值和最小值
求向量的值和最小值的函数调用格式见表5.1。
(2)求矩阵的值和最小值
求矩阵的值和最小值的函数调用格式见表5.2。
表5.2 求矩阵的值、最小值函数
(3)两个向量或矩阵对应元素的比较
函数max和min还能对两个同型的向量或矩阵进行比较,函数调用格式见表5.3。
表5.3 值、最小值函数
MATLAB提供的数据序列求和与求积的函数分别是sum和prod,这两个函数的使用方法类似,分别可以用来对向量和矩阵求和与求积。函数调用格式及功能见表5.4。
表5.4 求和与求积函数
在命令窗口中输入:
>> prod(B) %返回各列元素的积
ans =
③可以采用下列的方式返回矩阵B各列元素的和与矩阵B各列元素的乘积,具体输入内容和计算返回结果如下:
>> sum(B,1) %返回各列元素的和
ans =
2.2741 2.1284 2.6735 2.2420
>> prod(B,1) %返回各列元素的积
ans =
④返回矩阵B各行所有元素的和与矩阵B各行所有元素的积,在命令窗口中输入:
>> sum(B,2) %返回各行元素的和
>> prod(B,2) %返回各行元素的积
MATLAB提供了求数据序列平均值的函数mean与数据序列中值的函数median,函数调用格式及功能见表5.5。
表5.5 求平均值与中值函数
>> mean(A,2) %计算得到矩阵A各行的算术平均值
>> median(A,2) %计算得到矩阵A各行的中值
在MATLAB中,使用cumsum和cumprod函数能方便地求得向量和矩阵元素的累加和与累乘积向量,函数调用格式及功能见表5.6。
表5.6 累加和与累加积函数
在MATLAB中,提供了计算数据序列的标准方的函数std。该函数对于向量X返回一个标准方;对于矩阵A返回一个行向量,它的各个元素便是矩阵A各列或各行的标准方。调用格式为:
Y=std(A,flag,dim)
其中,dim可以取1或2。当dim=1时,求各列元素的标准方;当dim=2时,则求各行元素的标准方。flag可以取0或1,当flag=0时,置前因子为 ;否则置前因子为 。缺省flag=0和dim=1。
MATLAB提供了corrcoef函数,可以求出数据的相关系数矩阵。调用格式为:
corrcoef函数返回从矩阵X形成的一个相关系数矩阵。此相关系数矩阵的大小与矩阵X一样。它把矩阵X的每列作为一个变量,然后求它们的相关系数。其中X,Y是向量,与corrcoef([X,Y])的作用一样。
>> corrcoef(A) % 求解矩阵A形成的一个相关系数矩阵
返回相关系数矩阵如下:
ans =
1.0000 -0.2608 0.5478 -0.2
-0.2608 1.0000 -0.9397 0.2996
-0.2 0.2996 -0.3984 1.0000
②可以求向量B形成的一个相关系数矩阵。在命令窗口中输入以下内容:
>> corrcoef(B) %求取向量B形成的一个相关系数矩阵
返回相关系数矩阵如下:
ans =
1MATLAB提供了sort函数来实现排序功能,调用格式如下:
函数返回一个对X中的元素按升序排列的新向量,Y是排序后的矩阵,而I记录Y中的元素在A中位置。其中,dim指明对矩阵A的列还是行进行排序。若dim=1,则按列排;若dim=2,则按行排。
Y =
0.7948 0.2523 0.1365 0.2987
0.8801 0.2714 0.7373 0.6614
I =
3 1 4 2
1 4 3 3
本章重点介绍了MATLAB提供的基本的数算功能,主要包括多项式的相关运算、数据的插值与拟合运算、数据统计处理运算以及傅立叶变换等内容。
多项式部分通过实例重点介绍了多项式运算相关的内容,主要包括多项式的表示方法、多项式的四则运算、多项式的求导运算、多项式的求值与求根运算、多项式的展开以及多项式的积分运算等内容。掌握多项式运算内容是深入学习MATLAB其他内容的基础。
数据插值部分和拟合部分通过实例介绍了MATLAB提供的数据处理时经常使用的数据插值和拟合运算函数,其中插值部分包括一维和二维数据的插值运算。曲线拟合运算时要正确的选择所要拟合的多项式的阶,并不是拟合多项式的阶越高精度越好,一般拟合多项式的阶不超过5阶。
数据统计处理部分通过实例详细介绍一些常用的数据统计处理方法,主要包括数据的值与最小值运算、求和与求积运算、平均值与中值运算、累加和与累乘积运算、标准方、相关系数以及排序等运算。
MATLAB编程
cmax=-fval1.
a=rand(1,20);
max1=max(a) %用max函数求值
min1=min(a) %用max函数求值
%以下用循b=[0 6 6];环方法求解:
min2=a(1);
for i=2:20
if a(i)>ma换元法求最值x2
max2=a(i);
if a(i) min2=a(i); max2 min2 2.(1) function t=fibonacc1 f=[1,1]; n=2; while 1 f=[f,f(n-1)+f(n)]; n=length(f); if f(n)>4000 break; t=f(n); 我执行的结果是4181,应该没错的 function n=fibonacc2 f=[1,1]; n=2; while 1 f=[f,f(n-1)+f(n)]; n=length(f); if f(n)>4000 break; n=n-1; 我执行结果是18个,即5000内有18个数 3. 本程序实现的是(15+21)4 结果为108 两个for循环,个for循换是循环次数,为矩阵行数,即循环4次 第二个for循环实现的是对矩阵k每一行列元素看其是否为奇数,如果为奇数,将其累加到s,列只有15和21为奇数 综上,计算过程为(15+21)4 4. >> sum(11:110)+sum(21:210)+sum(31:310) ans = 75735 5. for i=0:36 %设鸡为i只,依次列举 foots=i2+(36-i)4; if foots==100 chicken=i rabbit=36-i chicken = 22 rabbit = 14 6. a(1)=100; for i=2:10 a(i)=a(i-1)/2; b=2sum(a)-100; disp('第10次落地时,共经过'),disp(b),disp('米'); disp('第十次反弹'),disp(a(10)/2),disp('米') 第10次落地时,共经过299.6094米 第十次反弹0.0977米 写的好累哦,如果觉得不错的话,追加点儿分吧 [m,n]=max(abs(M))%n的值为位置 m=length(m);%m本来为值,无用,替代为维数 a=zeros(1,m);%初始化a for i=1:m a(i)=M(n(i),i);%赋值 M=[1 2 3; 7 5 3; -8 7 6]; N = abs(M)'; R = arrayfun(@(a,b) M(a,b),1:length(I),I) % 结果 M=[1 2 3; 7 5 3; -8 7 6]; b = min(M,[],2); c = a + b快速; d = c == 0; e = -d; f = e == 0; g = e + f; z = g.a 虽然有点笨,但是可以满足你的需求 高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善。 扩展资料: 编[C,I] = max(N);程环境: MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。 随着MATLAB的商业化以及软件本身的不断升级,MATLAB的用户界面也越来越精致,更加接近Windows的标准界面,人机交互性更强,作更简单。而且新版本的MATLAB提供了完整的联机查询、帮助系统,极大的方便了用户的使用。 f=[0;0;0;0;0;-1]; A=[-1 -2 -7 1 -1 -7;2 7 6 5 6 0;5 4 6 2 2 0]; lb=zeros(6,1); [z,fval]=linprog(f,A,b,[],[],lb); 结果cmax = 1.9868e+007 linprog 可以看下帮助 这位兄弟的程序很对,我再补充一下 用min( )max()程序清单: for i=1:20 a(i)=input('please input2、根据数学模型,自定义其函数,func=@(a,t)a(1)+a(2)t anumber:'); maxa=max(a); mina=min(a); mina 运行后会在命令窗出现 =mina =用循环作程序清单: for i=1:20 a(i)=input('please input anumber:'); maxa=a(1); mina=a(1); for i=2:20 if a(i) min=a(i); mina 结果一样 >> Y1=polyvalm(p3,p4) %第二个参数必须为方阵或数a=max(abs(M),[],2);值你拟合出来的曲面应该是一个矩阵吧,用max函④求矩阵A的各行的算术平均值与中值,在命令窗口中输入:数就可以找值。 要极值点的话可以试试用gradient。不过应该找梯度向量的模长小于某个阈值的点(而不是正好为0),因为数值计算是有误的。
matlab怎么做到取矩阵每一行中的数,取出的值是大的数,但是不是加了之后的正数,
maxamatlab求线性规划值
0.9568 0.9797 0.8757 0.8939结果:输入20个数,求其中数和最小数。要求分别用循环结构和调用MATLAB的max函数、min函数来实现。
求线性规划值只需要将原来函数的系数全部改为负数即可,并且如果在约束条件中有大于某一值的约束条件,也需要将约束的系数和资源改为负数。matlab中用插值对三维离散数据拟合出三维曲面后,怎样求曲面的极值
版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。
随便看看
- 2024-11-10 青骄第二课堂登不上去是什么原因(青骄第
- 2024-11-10 千里之行代表什么意思_千里之行意思是什
- 2024-11-10 创新创业比赛如何报名 创新创业比赛如何
- 2024-11-10 德国弗莱堡大学值得读吗 弗莱堡大学ds
- 2024-11-10 学校十四五规划心得感悟 学校十四五规划