高考数学数列有关的题讲解_高考数列经典例题50道大题

数学数列高考题!!要讲解

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

am+n=am+an或者am+n=am+an+1

高考数学数列有关的题讲解_高考数列经典例题50道大题高考数学数列有关的题讲解_高考数列经典例题50道大题


高考数学数列有关的题讲解_高考数列经典例题50道大题


a2=0,而且a2=a1+a1或者a2=a1+a1+1

因为an每一项都为非负实数,那么a1=a2=0

a3>0,a3=a2+a1+1=1

a4=a3+a1=a2+a2=1(楼主应该能推出这个吧)

a100=a10+a90(+1),a90=a10+a80(+1)

一定能b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。化得

a100=10a10+n(n>0,能理解吧?)

因为这个an每一所以an=3n-2.令an=3n-2=219=76,得n=26.故选C.项都是整数(因为前几项就只有整数了嘛)

所以这个a10=1,2或者3

明显a10不能等于1

因为a10=a1+a9(+1)=a1+a2+a7(+2)=a1+a2+a3+a4(+3)

如没有+3,a10都至少等于a3+a4=2

然后a10=a6+a4(+1)=a3+a3+a4(+2)

同样道理,a10也不会等于2

那么a10=3

高考数列的数学归纳法其中的放缩法有什么规律吗?我怎么想不到???比如o7年全国一卷那个数列证明

综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。

放缩法一般来说是高考的难点 要求又比较强的观察力计算能力分析能力等 个人感觉高考压轴题出个放缩法再结合构造函数估计就是难倒一片了

放缩法要自己总结的,其实方法不多,你多做几道题就可以了,主要在于总结经验,有时候不能马上发现怎么放缩合适,这时候你可以试探一下,不行就换,数学那么2+1/1198≤a401^2-a400^2=2+1/a400^2≤2+1/799灵活,总能找到出路的。

高考数学压轴题的解题方法加油哦

高考数学压轴题有哪些解题方法

2+1/799≤a268^2-a267^2=2+1/a267^2≤2+1/533

一般来说,高考数学压轴题是为了拉开考生之间的距准备的,但是掌握方法,也能让你很好的答对高考的压轴题哦。下面是我分享的高考数学压轴题的解题方法,一起来看看吧。

三、曲线本身的对称问题

正确认识压轴题

压轴题主要出在函式,解几,数列三部分内容,一般有三小题。记住:小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!

其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!

化繁为简,能做多少算多少

如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程式化了的方法,每进行一步得分点的演算都可以得分,结论虽然未得出,但分数却已过半,因为判卷是不只看结果的。

重视审题

你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。

小窍门

一道大题中题的是下一题的条件。很多同学在做压轴题时都忽略了一个重要条件,就是小题的。一般小题很简单,第二题很难,有的同学忽略了题可以作为下一题条件这个重要求 an乘以a(n+1)分之4 求数列 前n项和因素,所以耗时很久也解答不出来。建议考生罗列题目给出的条件时,一定要把小题的也考虑进去。当然,不是每个压轴大题都是这样的,也有很多压轴题的不同小题给出不同条件,希望考生们能够根据实际情况随机应变。

退步解答

“以退求进”是一个重要的解题策略。对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变数退到常量,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

平常心,不要紧张

做题时心态是非常重要的,有的同学解答不出来时容易烦躁、紧张、出冷汗或者自暴自弃,这在高考中是最忌讳的。如果时间充足,建议同学们在压轴题上训练自己的心态,即使做不出来也要冷静、淡定,另外要注意好时间的控制。

做压轴题的境界是没有难易之分,只有根据题目条件推理出新条件,最终获取结论的做题流程。如果解答不出就果断放弃,能够解答到哪里就解答到哪里,老师会根据得分点来给分的。

高考数学解答题的解题技巧

珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确的。所以,解题时,一切都从题目条件出发,只有这样,一切才都有可能。

在数学家波利亚的四个解题步骤中,步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时:步骤1将题目条件推汇出“新条件”,步骤2将题目结论推导到“新结论”.

步骤1就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推汇出来,从而得到“新条件”。步骤2就是想要得到 题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以 建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!

要提醒的是,虽然我们认为一题有相当分值的易得分部分,但是毕竟已是整场考试的阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。

高考数学压轴题分析方法

1、综合性强,突出数学思想方法的运用。

近几年数学高考压轴题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查。对数学思想和方法的考查,是对数学知识在更高层次的抽象和概括的考查。数学高考压轴题,已经由单纯的知识叠加型转化为知识、方法、能力综合型,尤其是创新能力型试题。压轴题是高考试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的探究意识、创新意识和创新能力等特点。

2、高观点性,与高等数学知识接轨。

所谓高观点题,是指与高等数学相联络的一些数学问题。这样的问题或以高等数学知识为背景,或体现高等数学中常用的数学思想方法和推理方法。由于高考的选拔功能,这类题往往倍受命题者青睐。近年来的考题中,出现了不少背景新、设问巧的高观点题,成为高考题中一道亮丽的风景。

3、交汇性,强调各个数学分支的交汇。

高考数学命题,在考查基础知识的基础上,注重在知识网路的交汇点上设计试题,重视对数学思想方法与数学能力的考查,是近年来高考试题的特色。高考数学压轴题讲究各个数学分支的综合与交汇,有利于加强对考生分析问题与解决问题的能力考查。

4、结论或条件比较新颖

在这类试题往往内涵丰富,立意新颖,表述脱俗,背景鲜活,设问独特,让人赏心悦目,回味无穷,给人耳目一新的感觉。

数学高考关于数列的题。在线等急

Tn=|b1|+|b2|++|bn|

B1+C1=2A1 A不变,B1>C1 得B1>A1>C1

数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等数列、等比数列的基础以及可化为等、等比数列的简单问题,同时应重视等、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.

B是按C和A来的,C是按B和A来的,那么就会一大一小(就是说当n为1,3,5.....时B>A>C,当n 为2,4,6.....时C>A>B),其实这都无所谓

Sn是面积,底X高,底就用A,那么就是高了,B+C=2A(A不变,就为常数)

那么当B=C=A时,高,B和C 都是前面的C+A和B+A的一半,会越来越靠近B=C=A

所以1/9070+2≤a3025^2-a3024^2=1/a3024^2+2≤1/6047+2Sn是增的

选B

如果正在学数列的话,我可以给你这个题目的解题过程

高考数学数列

=(9-n)12n+112n=9-n2,

a1=1,a(n+1)=an+1/an

(1)不知道要证明啥

(2)证明√(2n-1)≤an≤√(3n-2)

(3)求正整数m使得|a2017-m|最小

(2)

经验证n=1,2,3,4时不等式都成立,设当n=N时不等式成立,即√(2N-1)≤aN≤√(3N-2),则2N-1≤aN^2≤3N-2。

则当n=N+1时,2(N+1)-1<2N-1+2+1/(3N-2)≤a(N+1)^2=aN^2+1/aN^2+2≤3N-2+2+1/(2N-1)≤3N-2+2+1=3(N+1)-2

所以√[2(N+1)-1]≤a(N+1)≤√[3(N+1)-2]

所以当n=N+1时,不等式也成立。即对于任意正整数n,都有√(2n-1)≤an≤√(3n-2)。

(3)

为了方便,我们把a2017往回走遍历a2016,a2015,...,an的做法叫下行,而往前遍历a2018,a2019,...,ak的做法叫上行。

1/78

则上两式表明下行时最多不超过78次,an的值就要比a2017减小1;而上行时,最少要63次ak的值才比a2017增加1.因为下行时an减小的速度会越来越快,而上行时增加的速度会越来越慢。

现在来看a(2017-78)=a1939和a(2017+63)=a2080的情况

62<√3877≤a1939≤√5815<77,64<√4159≤a2080≤√6238<79

4033≤a2017^2≤6049

4033=3n-2,n=13高考数学得分技巧45;6049=2n-1,n=3025,3025-1345=1680

则2689≤a1345^2≤4033,6049≤a3025^2≤9073,6049-2689=3360=16802,下限不计

26≤a1346^2≤4036,6047≤a3024^2≤9070

1/4033+2≤a1346^2-a1345^2=1/a1345^2+2≤1/2689+2

2017-1345=672,上限为4033+6722=5377,672/4033<误<672/2689

3025-2017=1008,下限为6049-10082=4033

3025-1345=1680,4033+16802=7393,7393-10082=5377

2689=3n-2,n=897,1793≤a897^2≤2689,1795≤a898^2≤2692,

2+1/2689≤a898^2-a897^2=1/a897^2+2≤2+1/1793

2017-897=1120,2689+11202=4929=a2017^2上限,1120/2689<误<1120/1793

1793=3n-2,n=599,1197≤a599^2≤1795,

2+1/1795≤a600^2-a599^2=2+1/a599^2≤2+1/1197

2017-599=1418,1795+14182=4633=a2017^2上限,1428/1795<误<1418/1197

1197+1=3n-2,n=400,799≤a400^2≤1198,

2017-400=1617,1201+16172=4435=a2017^2上限,1617/1198<误<1616/799

799=3n-2,n=267,533≤a267^2≤799,

2017-267=1750,799+17502=4299=a2017^2上限,1750/799<误<1750/533

533+1=3n-2,n=179,357≤a179^2≤535,

2+1/535≤a268^2-a267^2=2+1/a267^2≤2+1/357

2017-179=1750,535+18382=4211二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)=a2017^2上限,1838/535<误<1838/357

359-1=3n-2,n=120,239≤a120^2≤358,

2+1/358≤a121^2-a120^2=2+1/a120^2≤2+1/239

2017-120=1750,358+18972=4152=a2017^2上限,4<1897/358<误<1897/239<8

到此终于可以结束了,因为a2017^2上限4152即使加上误8开方后也小于64.5,

数列解题方法技巧总结

解析:(1)本道试题主要是对正项数列的概念以及等比数列的通项公式和求和公式知识点的考查,考查学生对数列基础知识和基本运算的掌握能力。

人生需要反思,总结才能远航,回首往夕,收获的是经验和提高。下面就是我整理的数列解题方法技巧总结,一起来看一下吧。

2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0

学生们在高中的数学学习过程中如果能够充分掌握高中数学数列试题的解题方法和技巧,这对于在大学期间学习数学会有很大的帮助。在最近几年的数学高考中,数列知识点的考查已经成为高考出题人比较看重的一项考点,甚至有一部分拔高题也都和数列有着直接的关系。可是在高中数学的学习阶段,很多的学生对于高中数学数列试题的解题方法和技巧还非常欠缺,对有一些问题和内容并没有得到充分的理解和吸收,往往在解题过程中,出现这样那样的问题。所以,探索和研究不同类型数列的解题方法和技巧,能够帮助学生更好地学好高中的数学。

C.小于4 D.大于2且小于4

高中数学数列试题教学中的解题思路与技巧

1.对数列概念的考查

在高中数列试题中,有一些试题可以直接通过带入已学的通项公式或求和公式,就可以得到,面对这一种类型的试题,没有什么技巧而言,我们只需熟练掌握相关的数列公式即可。

例如:在各项都为正数的等比数列{b}中,首项b1=3,b1+b2+b3=21,那么b3+b4+b5等于多少?

(2)本试题要求学生要熟练掌握老师在课堂上所教的通项公式和求和公式。

(3)首先让我们来求公比,很明显q不等1,那么我们可以根据我们所学过的等比数列前项和公式,列出关于公比的方程,即3(1-q3)/(1-q)=21。

对于这个方程,我们首先要选择其运算的方式,要求学生平时的练习过程中,要让学生能够熟练地将高次方程转化为低次方程进行运算。

2.对数列性质的考察

有些数列的试题中,经常会变换一些说法来考查学生对数列的基本性质的`理解和掌握能力。

例如:己知等数列{xn},其中xl+x7=27,求x2+x3+x5+x6等于多少?

解析:我们在课堂上学习过这样的公式:等数列和等比数列中m+n=p+q,我们可以充分利用这一特性来解此题,即:

xl+x7= x2+x6= x3+x5=27,

因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54

这种类型的数列试题要求教师在课堂教学中,对数列的性质竟详细讲解,仔细推导。使得学生能够真正的理解数列性质的来源。

3.对求通项公式的考察

①利用等、等比数列的通项公式,求通项公式

②利用关系an={S1,n=1;Sn-Sn-1,n≥2}求通项公式

③利用叠加、叠乘法求通项公式

⑤利用构造法求通项公式.

4.求前n项和的一些方法

在最近几年的数学高考试题中,数列通项公式和数列求和这两个知识点是每年必考的,因此,在高中数学数列的课堂教学中,教师要对数列求和通项公式这方面的知识点进行细致重点的讲解。数列求和的主要解题方法有错位相减法、分组求和法与合并求和法,下面对三种数列求和的解题方法进行详细说明。

(1)错位相减法

错位相减法主要应用于等比数列的求和中,在最近几年的高考试题当中,以此方法来求解数列求和的试题经常会有所体现。这一类型的试题解题方法主要是运用于诸如{等数列·等比数列}数列前n项和的求和中。

例如:已知{xn}是等数列,其前n项和是Sn,{yn}是等比数列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求数列{xn}与{yn}的通项公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N证明Tn+12=-2xn+10yn,n∈N

解析:(1)xn=3n-1,yn=2n;

(2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,

2Tn= 22xn+23xn-1+…+2nx2+2n+1x1

计算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10

-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10

所以,Tn+12=-2xn+10yn,n∈N

错位相减法主要应用于形如an=bncn,即等数列·等比数列,这样的数列求和试题运算中,解此类题的技巧是:首先分别列出等数列和等比数列的前n的和,即Sn,然后再分别将Sn的两侧同时乘以等比数列的公比q,得出qSn;错一位,再将两边的式子进行相减就可以了。

(2)分组法求和

在高中数列的试题当中,往往会遇到一部分没有规律的数列试题,它们初看上去既不属于等数列也不属于等比数列,但是如果将此类型的数列进行拆分,就可以得到我们所了解的等数列和等比数列,遇到此类型的数列试题,我们就可以通过分组法求和的方法进行解题,首先将数列进行拆分,通过得到的等数列和等比数列进行运算,将其结合在一起得出试题的。

(3)合并法求和

在高考数列的试题中,往往会遇到一些非常特殊的题型,它们初看上去没有规律可循,但是通过合并和拆分,就可以找出它们的特殊性质。这就要求我们教师平时要锻炼学生对数列的合并能力,通过合并找出规律,最终成功地解决这类特殊数列的求和问题。

结束语

数列知识是各种数学知识的连接点,在数学考试中,往往是基于数列知识为基础,对学生的综合数学知识进行考查。在高中数列学习过程中,首先要做好数列基本概念和基本性质的掌握,否则任何解题技巧都无济于事。

问一道高中数学数列的

因为4/[(4n-3)(4n+1)]=1/(4n-3)-1/(4n+1)

所以1-1/5+……+1/(4n-3)-1/(4n+1)=1-1/(4n+1)=4n/(4n+1)!

运用求和中很常见的裂项相肖法。就是将式子变形为两项相减,以便求和中都抵消了。an=4n-3

所以4/[ana(n+1)]=4/[(4n-3)(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。(4n+1)]=1/(4n-3)-1/(4n+1)

所以{4/[ana(n+1)]}的前n项和是

(1/1-1/5)+(1/5-1/9)+...+[1/(4n-3)-1/(4n+1)]

=1+(-1/5+1/5)+(-1/9+1/9)+...+[-1/(4n-3)+1/(4n-3)]-1/(4n+1)

1/(3n-2)-1/(3n+Sn=n23n+1-143n+1+34.1)=3/(3n-2)(3n+1)=1-1/(4n+1)

=4n/(4n+1)

裂项求和为数列中常用的求和方法之一,也是高考常考的知识点,数列求和一般先分析通项公式,本题通项4/(4n-3)(4n+1)=1/(4n-3)--1/(4n+1),结果求和时只剩首项中的1,末项中的)--1/(4n+1),所以合为1--1/(4n+1),满意吗,估计你是高一的学生

这部分是什么意思啊。。两个问题一个?

两个求,一个??an乘以a(n+1)作为分母么?

2022年全国新高考1卷数学试题及详解

但是n-m≠0,所以2a+(m+n-1)d=0。

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学详解

2022高考数学知识点 总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

考点一:与简易逻辑

部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目.

一、排列

1定义

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分由(2)可知√3969=63<√4033≤a2017≤√6049<78=√6084,步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法7.正项等比数列{an}中,若log2(a2a98)=4,则a40a60等于()密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作(商)→变形→判断符号(值)。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。

1.在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

★ 2022高考卷数及解析

★ 2022高考甲卷数试卷及

★ 2022卷高考文科数学试题及解析

★ 2022高考全国甲卷数学试题及

★ 2022年新高考Ⅱ卷数试卷及

★ 2022全国乙卷理科数及解析

★ 2022高考数学大题题型总结

★ 2022年高考全国一卷作文预测及范文

★ 2022年高考数学必考知识点总结

关于高中数列的常见解题思路

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

1、化成常用数列,如等数列和等比数列、平方数列、立方数列等。

2、错位相减法,对形如{a_nb_n}的数列常用此法,其中a_n是等数列,b_n是等比数列。常见方法。

3、公式法。如对分方程a_n+2=pa_n+1+qa_n,(p、q为常数)可用特征方程x^2=px+q解。若特征方程有两相异根x1和x2,通解为an=αx1^n+βx2^n;若两根解:在方程中以-x换x,同时以-y换y得相同x1=x2,通解为(α+βn)x1^n,常数α和β由初始情况确定。

4知识整合、裂项法。裂项之后中间项能相互抵消而化简。该法也很常见。

5、数学归纳法。先计算出前面几项,然后对同项公式进行猜想,用数学归纳法严格证明之。这个方法使用很多,要重点掌握。


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看