2020福建高考数学大纲 福建省高考数学考纲

2019福建省体育类高考统考项目:据说2019年福建省体育类高考统考除去原来的100,800,铅球

创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

1、2016年福建省普通高考文史类、文科艺术类和文科体育类考生的文化课考试科目为语文、数学、外语、文科综合;理工类、理科艺术类和理科体育类考生的文化课考试科目为语文、数学、外语、理科综合。

2020福建高考数学大纲 福建省高考数学考纲2020福建高考数学大纲 福建省高考数学考纲


2020福建高考数学大纲 福建省高考数学考纲


2、2016年福建省高考所有科目将统一使用全国卷,大纲难度不变。考试形式与试卷结构如下:

一、答卷方式

闭卷、笔试。

二、考试十五、复数(4课时,4个)时间

考试时间150分钟,试卷满分300分。

三、科目分值

物理110分、化学100分、生物90分。各学科试题只涉及本学科内容,不跨学科综合。

四、题型

试卷包括选择题和非选择题,非选择题一般包括填空、实验、作图、计算、简答等题型。

五、试卷结构

1、试卷1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;分第Ⅰ卷和第Ⅱ卷

第Ⅰ卷为生物、化学、物理三个科目的必考题,题型为选择题。共21题,每题6分,共计126分。其中生物6道题(单项选择题),化学7道题(单项选择题),物理8道题(包括单项选择题和多项选择题)。

第Ⅱ卷由生物、化学、物理三科的必考题和选考题构成。生物、化学、物理各科选考内容的分值控制在15分左右。

第Ⅰ卷 选择题(一) 13题 78分 第Ⅰ卷 选择题(二) 8题 48分 第Ⅱ卷 必考题 11题 129分 第Ⅱ卷 选考题 8选3 45分 2、组卷:试卷按题型、内容和难度进行排列,选择题在前,非选择题在后,同一题型中同一学科的试题相对集中,同一学科中不同试题尽量按由易到难的顺序排列。

今年高考数学考点

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.

2006年高考数学考点(139个)必修(115个)

a.4x-y-3=0 b.x+4y-5=0

一、、简易逻辑(14课时,8个)

1.; 2.子集; 3.补集;

4.交集; 5.并集; 6.逻辑连结词;

7.四种命题; 8.充要条件.

二、函数(30课时,12个)

1.映射; 2.函数; 3.函数的单调性;

7.有理指数幂的运算; 8.指数函数; 9.对数;

10.对数的运算性质; 11.对数函数. 12.函数的应用举例.

三、数列(12课时,5个)

1.数列; 2.等数列及其通项公式; 3.等数列前n项和公式;

4.等比数列及其通顶公式; 5.等比数列前n项和公式.

四、三角函数(46课时17个)

4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;

8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;

10.周期函数; 11.函数的奇偶性; 12.函数 的图象;

13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;

16余弦定理; 17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量 2.向量的加法与减法 3.实数与向量的积;

4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;

7.平面两点间的距离; 8.平移.

1.不等式; 2.不等式的基本性质; 3.不等式的证明;

4.不等式的解法; 5.含的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;

4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;

10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;

4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;

7.抛物线的简单几何性质.

九、(B)直线、平面、简单何体(36课时,28个)

1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;

4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;

6.三垂线定理及其逆定理; 7.两个平面的位置关系;

8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;

10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;

13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;

16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;

19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;

22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;

25.棱柱; 26.棱锥; 27.正多面体; 28.球.

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’

4.组合; 5.组合数公式; 6.组合数的两个性质;

7.二项式定理; 8.二项展开式的性质.

十一、概率(12课时,5个)

1.随机的概率; 2.等可能的概率; 3.互斥有一个发生的概率;

4.相互同时发生的概率; 5.重复试验.

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方; 3.抽样方法;

4.总体分布的估计; 5.正态分布; 6.线性回归.

十三、极限(12课时,6个)

1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;

4.函数的极限; 5.极限的四则运算; 6.函数的连续性.

十四、导数(18课时,8个)

1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;

4.两个函数的和、、积、商的导数; 5.复合函数的导数; 6.基本导数公式;

7.利用导数研究函数的单调性和极值; 8函数的值和最小值.

1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;

4.数系的扩充.

一、复习方式

分三轮复习。轮复习为基础知识的单元、章节复习。通过轮的复习,使学生系统掌握基础知识、基本技能和方法,形成明晰的知识网络和稳定的知识框架。我们从双基入手,紧扣中考知识点来组织单元过关。结合学生的实际情况,我们实行严格的单元过关,对C层和B层的部分学生实行勤查、多问、多反复的方式巩固基础知识,在知识灵活化的基础上,还注重了培养学生阅读理解、分析问题、解决问题的能力。

第二轮复习打破章节界限实行大单元、小综合、专题式复习。第二轮复习绝不是轮复习的压缩,而是一个知识点综合、巩固、完善、提高的过程。复习的主要任务及目标是:完成各部分知识的条理、归纳、糅合,使各部分知识成为一个有机的整体,力求实现基础知识重点化,重点知识网络化,网络知识题型化,题型设计生活化。在这一轮复习中,要以数学思想、方法为主线,学生的综合训练为主体,减少重复,突出重点。在数学的应用方面,注意数学知识与生活、与其他学科知识的融合,穿插专题复习(如图表信息专题、经济决策专题、开放性问题、方案设计型问题、探索性问题等),向学生渗透题型生活化的意识,以此提高学生对阅读理解题的理解能力。

第三轮复习是知识、能力深化巩固的阶段,复习资料的组织以中考题及模拟题为主,回扣教材,查缺补漏,进行强化训练。同时,要教给学生一些必备的应试技巧和方法,使学生有足够的自信从容地面对中考。由于考前的学习较为紧张,往往有部分学生易焦虑、浮躁,导致学习效率下降,在此阶段还应注意对学生的心态及时作出调整,使他们能以的心态参加中考。

中考数学复习黄金方案

打好基础提高能力初三复习时间紧、任务重,在短短的时间内,

如何提高复习的效率和质量,是每位初三学生所关心的。为此,我谈

一些自己的想法,供大家参考。

一 、扎扎实实打好基础

1、重视课本,系统复习。初中数学基础包括基础知识和基本技能

两方面。现在中考命题仍然以基础知识题为主,有些基础题是课本上

的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材

中的例题式习题,是教材中题目的引申、变形或组合,复习时应以课

本为主。

例如辽宁省2004年中考第17题:AB是圆O的弦,P是圆O的弦AB上的

一点,AB 10cm,AP 4cm,OP 5cm,则圆O的半径为()

cm。

本题是初三几何课本的原题。这样的题还很多,它告诉我们学好

课本的重要性。在复习时必须深钻教材,把书中的内容进行归纳整理,

使之形成自己的知识结构,尤其课后的读一读,想一想,有些中考题

就在此基础上延伸、拓展。一味地搞题海战术,整天埋头做大量练习

题,其效果并不佳,所以在做题中应注意解题方法的归纳和整理,做

到举一反三。

2、夯实基础,学会思考。中考有近70分为基础题,若把中档题和

较难题中的基础分计入,占的比值会更大。所以在应用基础知识时应

做到熟练、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思

考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来,

尤其在解决新情景问题的过程中,应感悟出如何正确思考。

3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及

的概念、公式、公理、定理等。掌握基础知识之间的联系,要做到理

清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点

问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中

的相似三角形、比例推导等等。

中考数学命题除了重视基础知识外,还十分重视对数学方法的考

查。如:配方法、换元法、判别式等作性较强的方法。

二、综合运用知识,提高自身各种能力

初中数学基本能力有运算能力、思维能力、空间想像能力以及体

1、提高综合运用数学知识解题的能力。要求同学们必须做到能把

各个章节中的知识联系起来,并能综合运用,做到触类旁通。目前阶

段应根据自身实际,有针对性地复习,(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.查漏补缺做好知识归纳、解题

方法的归纳。

纵观中考中对能力的考查,大致可分成两个阶段:一是考查运算

能力、空间想像能力和逻辑思维能力及解决纯数学问题的能力;二是

强调阅读能力、创新探索能力和数学应用能力。平时做题时应做到:

1)深刻理解知识本质,平时加强自己审题能力的锻炼,才能做到变更

命题的表达形式后不慌不忙,得心应手。2)寻求不同的解题途径与变

通思维方式。注重自己思维的广阔性,对于同一题目,寻找不同的方

法,做到一题多解,这样才有利于打破思维定势,开拓思路,优化解

题方法。3)变换几何图形的位置、形状、大小后能找到图形之间的联

系,知道哪些量没变、哪些量已改变。例如:折叠问题中折叠前后图

形全等是解决问题的关键。

2、狠抓重点内容,适当练习热点题型。多年来,初中数学的“方

程”、“函数”、“直线型”一直是中考重点内容。“方程思想”、

“阅读理解题”、“方案设计”、“动手作”等问题也是近几年中

考的热点题型,这些中考题大部分来源于课本,有的对知识性要求不

同,但题型新颖,背景复杂,文字冗长,不易梳理,所以应重视这方

面的学习和训练,以便熟悉、适应这类题型。如何做好中考数学复习

首先,作为考生必须了解中考方面的有关政策,避免复习走弯路、走错路。考生要认真研读《中考考试说明》,领会、看清考试范围,重点研究样题的参中的评分标准,对于每一个给分点要牢记于心,避免解题中出现“跳步”现象。

第二,认识自我,建立自信。中考毕竟不是高考,它的主要职能是了解学生在义务教育阶段的数学学习历程,评价学生的基本数学水平,其次才是作为高中招生的主要依据。纵观近年全国各地中考试题,其试卷的难度分布大多控制在4:5:1或5:4:1(容易题:中等题:难题)。所以,考生大可不必因为不会解部分数学题而怀疑自己的数学能力和水平,甚至可以这样说,只要在这学期的复习阶段奋发努力,中考也不会走大样。

第三,制定复习,合理安排复习时间。一般来说,中考复习可安排三轮复习。轮,摸清初中数学内容的脉络,开展基础知识系统复习,按初中数学的知识体系,可以把二十一章内容归纳成八个单元:①数与式{实数,整式,分式,二次根式}②方程(组)与不等式(组){一次方程(组),一元一次不等式(组),一元二次方程,分式方程,简单二元二次方程(组)}③函数与统计{一次函数,二次函数,反比例函数,统计}④三角形⑤四边形⑥相似形⑦解直角三角形⑧圆。中考试题中属于学生平时学习常见的“双基”类型题约占60%还多,要在这部分试题上保证得分,就必须结合教材,系统复习,对必须掌握的内容要心中有数,胸有成竹。在此我建议各位考生首先一定要配合你的老师进行复习,切忌走马观花,好高骛远,不要另行一套;其次,复习应配备适量的练习,习题的难度要加以控制,以中、低档为主,另外,对于你觉得较难的题,或者易错的题,应养成做标记的好习惯,以便在第二阶段进行再回头复习。注意:套题训练不易过早,参考资料应以单元为主,本阶段复习宜细不宜粗。

第二轮,针对热点,抓住弱点,开展难点知识专项复习。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,各位考生应在老师的指导下,对这些热点题型认真复习,专项突破。热点题型一般有:阅读理解型、开放探究型、实际应用型、几何代数综合型、研究性学习型等。注意:你应该有一本各省市中考试题汇编资料,要知道外地考题中出现的精彩题型,往往就是本地命题的借鉴。

第三轮,锁定目标,备战中考,进行模拟训练。经过轮和第二轮的复习,学习的基础知识已基本过关,大约到五月中、下旬就应该是第三轮的模拟训练,其目的就是查漏补缺和调整考试心理,便于以状态进入考场,建议考生在做好学校正常的模拟训练之余,使用各地中考试卷,设定标准时间,进行自我模拟测验。注意:自己评分应按评分标准进行,且不可只看,不看给分点。

初中数学总复习大致经过三轮,在轮复习中,往往存在以下问题:

2.复习不扎实,漏洞多,体现在1)题,难度太大,扔掉了大块的基础知识。2)复习速度过快,对学生心中无数,做了夹生饭,返工来不及,不返工漏洞百出。3)要求过松,对学生有要求无落实,大量的复习资料,只布置不批改;无作业。

3.解题不少,能力不高,表现在:1)以题论题,不是以题论法,满足于解题后对一下,忽视解题规律的总结。2)题目无序,没有循序渐进。3)题目重复过多,造成时间精力浪费。

在第二轮复习中,应防止出现如下问题:

1.防止把轮复习机械重复

2.防止单纯就题论题,应以题论法

3.防止过多搞难题

在第三轮复习中,应防止出现下列问题:

1.过多做练习,以练代讲

2.以复习资料代替教练,不备课,课堂组织松散

3.只注重知识辅导,不进行心理训练。

建议:

让学生向错误学习,放手让学生自己去搞点讲评,自己动手建立错题档案。对于有价值的题目,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,题目考查了哪些数学思想方法,本题有哪几种解题方法,解法是什么?当自己出错时,是知识上的错误还是方法上的错误,是解题过程的失误还是心理上的缺陷导致的失误。切实解决会而不对,对而不全,全而不美的问题。

高中文科数学高考范围有哪些?

“函数思想”贯穿于试卷始终。另外,“开放题”、“探索题”、

一般现在具体的高考考试大纲还不会出来的。还是偏重圆锥曲线(4)理解数形结合的思想.、数列、函数吧!高考大约就考这些东西。这些永远是重点。当然立体几何也很重要,不过相对那些简单一些,掌握了一些技巧就可以举一反三了。

要点三:三角函数、平面向量

,不同地方考试范围不一样,你看看你们是考的全国券还是地方券,现在考纲还没出来吧,函数,三角函数,数列,立体几何,解析几何,导数,不等式,参数方程以及极坐标,这么说也很笼统,不过建议你参考一下往两年的高考考点,

每年的高考考纲是会有别的,跟着老师走就对了,对于我门,数学根本不太需要考纲,老师上课会强调的哪些是重点的,文科需要考纲才很实际!

2018年高考文科数学考试大纲都有哪些?

1. 导数概念及其几何意义

Ⅰ. 考核目标与要求

六、不等式(22课时,5个)

根据普通高等学校对新生文化素质的要求,依据中华2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容.

如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.

一、知识要求

知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.

各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.

对知识的要求依次是了解、理解、掌握三个层次.

1. 了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.

2. 理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.

3. 掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.

二、能力要求

能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.

1. 空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.

空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.

2. 抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.

抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

3. 推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.

中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.

4. 运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.

运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.

5. 数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.

数据处理要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.

6. 应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.

7. 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

三、个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

四、考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.

1. 对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.

2. 对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.

对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.

4. 对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.

5. 对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.

Ⅱ.考试范围与要求

本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”“不等式选讲”2个专题.

必考内容

(一)

1. 的含义与表示

(1)了解的含义、元素与的属于关系.

(2)能用自然语言、图形语言、语言(列举法或描述法)描述不同的具体问题.

2. 间的基本关系

(1)理解之间包含与相等的含义,能识别给定的子集.

(2)在具体情境中,了解全集与空集的含义.

3. 的基本运算

(1)理解两个的并集与交集的含义,会求两个简单的并集与交集.

(2)理解在给定中一个子集的补集的含义,会求给定子集的补集.

(3)能使用韦恩(Venn)图表达的关系及运算.

(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)

1. 函数

(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.

(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.

(3)了解简单的分段函数,并能简单应用.

(4)理解函数的单调性、值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.

(5)会运用函数图像理解和研究函数的性质.

(1)了解指数函数模型的实际背景.

(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.

(4)知道指数函数是一类重要的函数模型.

3. 对数函数

(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.

(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.

(3)知道对数函数是一类重要的函数模型.

4. 幂函数

(1)了解幂函数的概念.

5. 函数与方程

(1) 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.

(2)根据具体函数的图像,能够用二分法求相应方程的近似解.

6. 函数模型及其应用

(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.

(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在生活中普遍使用的函数模型)的广泛应用.

(三) 立体几何初步

1. 空间几何体

(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.

(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.

(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.

(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).

(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.

2. 点、直线、平面之间的位置关系

(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.

公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.

公理2:过不在同一条直线上的三点,有且只有一个平面.

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

公理4:平行于同一条直线的两条直线互相平行.

定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.

(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.

理解以下判定定理.

如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.

如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.

如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.

如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.

理解以下性质定理,并能够证明.

如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.

垂直于同一个平面的两条直线平行.

如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.

(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.

(四)平面解析几何初步

1. 直线与方程

(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.

(3)能根据两条直线的斜率判定这两条直线平行或垂直.

(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.

(5)能用解方程组的方法求两条相交直线的交点坐标.

(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.

2. 圆与方程

(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.

(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.

(3)能用直线和圆的方程解决一些简单的问题.

(4)初步了解用代数方法处理几何问题的思想.

3. 空间直角坐标系

(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.

(2)会推导空间两点间的距离公式.

(五) 算法初步

1. 算法的含义、程序框图

(1)了解算法的含义,了解算法的思想.

(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.

2. 基本算法语句

理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.

(六) 统计

1. 随机抽样

(1)理解随机抽样的必要性和重要性.

(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.

2. 用样本估计总体

(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.

(2)理解样本数据标准的意义和作用,会计算数据标准.

(3)能从样本数据中提取基本的数字特征(如平均数、标准),并给出合理的解释.

(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.

(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.

3. 变量的相关性

(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.

(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.

(七) 概率

1. 与概率

(1)了解随机发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.

(2)了解两个互斥的概率加法公式.

2. 古典概型

(1)理解古典概型及其概率计算公式.

3. 随机数与几何概型

(1)了解随机数的意义,能运用模拟方法估计概率.

(2)了解几何概型的意义.

(八) 基本初等函数Ⅱ(三角函数)

1. 任意角的概念、弧度制

(1)了解任意角的概念.

(2)了解弧度制的概念,能进行弧度与角度的互化.

2. 三角函数

(1)理解任意角三角函数(正弦、余弦、正切)的定义.

(4)理解同角三角函数的基本关系式:

(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.

(九) 平面向量

1. 平面向量的实际背景及基本概念

(1)了解向量的实际背景.

(2)理解平面向量的概念,理解两个向量相等的含义.

(3)理解向量的几何表示.

2. 向量的线性运算

(1)掌握向量加法、减法的运算,并理解其几何意义.

(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.

(3)了解向量线性运算的性质及其几何意义.

3. 平面向量的基本定理及坐标表示

(1)了解平面向量的基本定理及其意义.

(2)掌握平面向量的正交分解及其坐标表示.

(3)会用坐标表示平面向量的加法、减法与数乘运算.

(4)理解用坐标表示的平面向量共线的条件.

4. 平面向量的数量积

(1)理解平面向量数量积的含义及其物理意义.

(2)了解平面向量的数量积与向量投影的关系.

(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.

(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.

5. 向量的应用

(1)会用向量方法解决某些简单的平面几何问题.

(2)会用向量方法解决简单的力学问题与其他一些实际问题.

(十) 三角恒等变换

1. 和与的三角函数公式

(1)会用向量的数量积推导出两角的余弦公式.

(2)能利用两角的余弦公式导出两角的正弦、正切公式.

(3)能利用两角的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.

2. 简单的三角恒等变换

能运用上述公式进行简单的恒等变换(包括导出积化和、和化积、半角公式,但对这三组公式不要求记忆).

(十一)解三角形

1. 正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

2. 应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

(十二)数列

1. 数列的概念和简单表示法

(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).

(2)了解数列是自变量为正整数的一类函数.

2. 等数列、等比数列

(1)理解等数列、等比数列的概念.

(2)掌握等数列、等比数列的通项公式与前项和公式.

(3)能在具体的问题情境中识别数列的等关系或等比关系,并能用有关知识解决相应的问题.

(4)了解等数列与一次函数、等比数列与指数函数的关系.

(十三)不等式

1. 不等关系

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

2. 一元二次不等式

(1)会从实际情境中抽象出一元二次不等式模型.

(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.

3. 二元一次不等式组与简单线性规划问题

(1)会从实际情境中抽象出二元一次不等式组.

(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

(1)了解基本不等式的证明过程.

(2)会用基本不等式解决简单的(小)值问题.

(十四)常用逻辑用语

1. 命题及其关系

(1)理解命题的概念.

(2)了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.

(3)理解必要条件、充分条件与充要条件的意义.

2. 简单的逻辑联结词

了解逻辑联结词“或”“且”“非”的含义.

3. 全称量词与存在量词

(1)理解全称量词与存在量词的意义.

(2)能正确地对含有一个量词的命题进行否定.

(十五)圆锥曲线与方程

(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.

(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.

(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.

(5)了解圆锥曲线的简单应用.

(十六)导数及其应用

(1)了解导数概念的实际背景.

(2)理解导数的几何意义.

2. 导数的运算

3. 导数在研究函数中的应用

(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).

(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的值、最小值(其中多项式函数一般不超过三次).

4. 生活中的优化问题.

会利用导数解决某些实际问题.

(十七)统计案例

1. 性检验

了解性检验(只要求2×2列联表)的基本思想、方法及其简单应用.

2. 回归分析

了解回归分析的基本思想、方法及其简单应用.

(十八)推理与证明

1. 合情推理与演绎推理

(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.

(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.

(3)了解合情推理和演绎推理之间的联系和异.

2. 直接证明与间接证明

(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.

(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.

(十九)数系的扩充与复数的引入

1. 复数的概念

(1)理解复数的基本概念.

(2)理解复数相等的充要条件.

(3)了解复数的代数表示法及其几何意义.

2. 复数的四则运算

(1)会进行复数代数形式的四则运算.

(2)了解复数代数形式的加、减运算的几何意义.

(二十)框图

1. 流程图

(1)了解程序框图.

(2)了解工序流程图(即统筹图).

(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.

2. 结构图

(1)了解结构图.

(2)会运用结构图梳理已学过的知识,整理收集到的资料信息.

选考内容

(一)坐标系与参数方程

1. 坐标系

(1)理解坐标系的作用.

(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.

(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.

(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.

(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.

2. 参数方程

(1)了解参数方程,了解参数的意义.

(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.

(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.

(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.

(二)不等式选讲

1. 理解的几何意义,并能利用含不等式的几何意义证明以下不等式:

4. 会用向量递归方法讨论排序不等式.

5. 了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.

6. 会用数学归纳法证明伯努利不等式:

了解当n为大于1的实数时伯努利不等式也成立.

7. 会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.

8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

高考数学的题型都有哪些?各自占着怎样的占分比?

1.复习无,效率低,体现在重点不准,详略不当,难度偏低,对大纲和教材的上下限把握不准。

1、高考数学分值分布

三角函数18分左右;立体几何22分左右;解析几何28分左右;数列18分左右;函数与导数43分左右;不等式12分左右;二项式定理6分左右;复数5分;概率与统计18分左右。各知识点都很平均。解析几何的选择题只是考察概念,不会很难,选择提前10道和大题的三角函数,概率,立体几何, 只多要做题,可以在短时间内突破。

2、高考数学(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.哪部分最难

高中数学,别说难或者不难,全部要好好学习。为了高考做准备。说的有点片面,但是真的要全部学习。现在的高考考的比较全面。必须按照考学大纲,全部掌握。高中数学都不太容易,理论性的东西多了一些,需要理解和掌握的东西比初中要多。如果前面的一部分学不好,那后面的就会感到越来越难。个人觉得,排列组合中的计算是最难的。但是对于数学中的难易成都也是因人而异的。

3、高考数学如何取得高分

真懂。知识要掌握准确:在复习中,考生要树立稳扎稳打的习惯,对似懂非懂的基本问题必须实实在在地对待。方法要到位:比如证明问题常用的方法:比较法。2016、2017、2018年高考题都有它的应用,到现在没有变化吗?现在的比较法从高考题上就告诉我们不仅要会直接比较,还解析:如图所示,设路灯e在地面上的射影为a,t秒人走到b点,设bc=x,要会间接比较即调整后作或作比,而且还要和导数相结合。

真算。提高自己运算能力,也就是加强算功。将运算进行到底,应当始终成为高考复习的一个原则。注重算法,算理。在平时运算时应注重精算、心算、悟算、不算的训练,注重把握好运算方向,选择好的运算公式,避免盲目运算。

高考数学的题型有简易,逻辑数列,三角函数,立体几何,圆锥曲线,概率与统计,导数算法,线性规划不等式,向量,复数,三视图。选择题40分、填空题30分、解答题80分。这些占分比考生们要根据自身的情况好好的复习,着重要侧重一些重点难点的题型。

首先说一些比较零散的模块,你比如说算出一个五分的小题,还有线性回归会出一个五分的小题,三视图会出一个五分的小题,复数和会各出一道五分的小题,向量有可能出一道五分的小题,也可能不出一道小题,而是放在后面和三角函数结合出一道大题,或者和解析几何结合出一道大题,二项式定理会出一个五分小题上面一是一些非常零碎的小知识点,而从每年的出题规律上看没有什么大的变化,从这一部分题从难度上看也是属于简单题,所以同学们应该重视起来,因为一旦发现自己有不会的地方可以很快的补上了来,前面这些题大概要占到40分左右

1.选择题,12道一道五分,分值60占百分之五十2.填空题4道,一道五分,分值20,占6/1。3.简答题,分值30占4/1

2007年高考数学考试大纲分析总结

7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;

《考试大纲》是对考什么、考多难、怎样考这3个问题的具体规定和解说。2007年的高考数学《教学大纲》和2006年高考数学《教学大纲》相比,总体保持稳定,进行了若干修订,但仍然是在平稳中过渡,在变化中进行创新。 一、《大纲》变化解析

现数学与生产、生活相关学科相联系的能力等等。

2007年高考数学《考试大纲》变化,主要表现在三个层面

3. 对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

1.知识要求的变化:将“了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它”,改为“了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一内容是什么,并能(或会)在有关的问题中识别它”。即在知识要求中,增加了知识相关背景的认识,要求学生学习数学知识的同时,应了解知识的背景,如导数概念的某些背景(如瞬时速度,加速度,平滑曲线的切线等),认识到数学知识来源于生活实际。

【考题】(2006年高考安徽卷)若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为( )

c.4x-y+3=0 d.x+4y+3=0

解析:与直线x+4y-8=0垂直的直线l为4x-y+m=0,即y=x4在某一点的导数为4,而y'=4x3,所以y=x4在(1,1)处导数为4,此点的切线为4x-y-3=0,故选a。

【样题】路灯距地平面8m,一个身高为1.7m的人以1.4m/s的速度匀速地从路灯的正底下沿某直线离开路灯,那么人影长度的变化速率v为( )

则有 ,即 ,解得

数学来源于实际,又高于实际,但最终要回归实际,2006年辽宁省高考只有一道概率统计的题目为实际问题,势必今年应有所增加。

2.能力要求的变化:“运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简洁的运算途径”,改为“运算能力:会根据法则,公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简洁的运算途径”;“在实施运算过程中遇到障碍而调整运算能力”,改为“在实施运算过程中遇到障碍而调整运算能力以及实施运算和计算的技能”。

运算能力是一种集算理、算法、计算、推理、转化等多种数学思想方法于一体的综合性能力。高考向来摒弃繁复的运算,淡化特殊技巧。对学生数算能力要求的提高是指在“目标”的指引下合理的而非盲目的,是善于反思和调整的,运算是推理的反映,而非模式化的。

3.考试要求的变化

【文科】(1)三角函数的考试要求中的“理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算”,改为“了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算”;(2)三角函数的考试要求中的“掌握任意角的正弦、余弦、正切的定义”,改为“理解任意角的正弦、余弦、正切的定义”;(3)直线、平面、简单几何体(a、b)的考试要求中“掌握平面的基本性质”改为“理解平面的基本性质”;(4)直线、平面、简单几何体(b)的考试要求中的(2)删除了“理解直线和平面垂直的概念”。

也就是说文科对三角函数的概念要求有所降低,突显了三角函数的工具性的作用,显现了知识内容向新课程转化的趋势,在平时的学习中,需要注意复习的方向,不要在这一部分刻意地追求难度。对平面的性质的要求,由掌握变为理解,更切合学生实际。

【理科】直线、平面、简单几何体(a、b)的考试要求中“掌握平面的基本性质”改为“理解平面的基本性质”。

《考试大纲》解析

主干内容重点考:基础知识全面考,重点知识重点考,淡化特殊技巧。

新增知识加大考:将新增知识与传统知识综合考是趋势。

思想方法更深入:考查与数学知识联系的基本方法、解决数学问题的科学方法。

突出思维能力考核:主要考查学生空间想象能力、学习能力、探究能力、应用能力和创新能力。

在知识重组上做文章:注意信息的重组及知识网络的交叉点。

运算能力有所提高:淡化繁琐、强调能力,提倡学生用简洁方法得出结论。

将向量作为工具来解立体几何是趋势。

实践应用能力进一步加强:从实际问题中产生的应用题是真正的应用题。

考查创新学习能力:学生能选择有效的方法和手段,要有自己的思路,创造性地解决问题。

二、要点分析

要点一:函数、不等式、导数

创造新情境,运用新形式,考查基本概念及其性质;函数具有抽象化趋势,即通过函数考查抽象能力;函数、数列、不等式的交汇与融合;利用导数研究函数性质,证明不等式。

要点二:数列、极限、数学归纳法

化归为等或等比数列问题解决;借助教学归纳法解决;推出通项公式解决;直接利用递推公式推断数列性质。数学归纳法的考查方式由主体转向局部。

结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用),考查三角函数性质的命题;考查三角函数性质及图像;以三角形为载体,考查三角变换能力,及正弦定理、余弦定理灵活运用能力;与向量结合,考查平面向量的性质和运算法则及基本运算技能,考查灵活运用知识能力。

要点四:立体几何

由考查论证和计算为重点,转向既考查空间观念,又考查几何论证和计算;由以公式、定理为载体,转向对观察、实验、作、设计等的适当关注;改变设问方式。

要点五:解析几何

运算量减少,对推理和论证的要求提高;考查范围扩大,由求轨迹、讨论曲线本身的性质扩大到考查曲线与点、曲线与直线的关系,与曲线有关的直线的性质;运用曲线与方程的思想方法,研究直线、圆锥曲线之外的其他曲线;根据定义确定曲线的类型;注重用代数的方法证明几何问题,把代数、解析几何、平面几何结合起来;向量、导数与解析几何有机结合。

要点六:概率与统计部分

等可能概率题型、互斥有一个发生的概率题型、相互的概率题型、重复试验概率题型,以上四种与数字特征(期望和方)计算一起构成的综合题。(版面紧张,例题待续)

高考数学考试大纲文史类的考试内容必考内容为所有必修系列和选修系列__?选考内容为选修系列__的三个专题?

文科

人教2004版 必修1.2.3.4.5数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

选修1-1 1-2

理科

人教2(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.004版 必修1.2.3.4.5

选修祝考生们高考取得好成绩!2-1 2-2 2-3

选考:不等式 数学史 矩阵变化

高三数学一轮复习

6.正弦、余弦的诱导公式’ 7.两角和与的正弦、余弦、正切;

一轮复习主要是根据老师所讲,进行全面的复习巩固。对于还没有建立知识结构的同学来说,这是一个非常好的时机。

了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.

首先,一轮复习,应该是有一本参考书,其中涵盖各种经典题目的,如果,能把每一题都消化,相信以高考的程度,万变不离其宗再怎么翻新,说到底也就是对经典题目的改造组合……对于刚经过高三的我来说深有体会,会发现,就是那那些题。不过,要想做到这一点,几乎是很难的。

其次,对老师所讲的,要认真听。老师一般都会为学生归类,这也是知识结构。

自己,要对只是分类记忆,比如三角函数的各种解法,和相应题目的特点,要举一反三。多做题,这是真理……一轮重视知识点,等到了二轮三轮,再会对试卷的各种题型分类分析,比如,就福建高考来说选择题题型会有,流程图,排列组合……大题题一定就是三角函数等等,到后面再按题型来复习,一轮是打基础很重要。

对于解不出来的题目,应该庆幸,在高考前见过,记住其解法,也是一种收获。如果什么都会,还复习干什么……希望你高考成功……

找一份数学高考大纲,在找一本比较详尽的大纲解析,按照大纲,把所有的知识点全部复习一遍,然后做各个知识点相关的训练题,这一遍需要你做到把所有的知识点都吃透,找到自己不熟悉以及不知道的知识点;第二遍重点弄自己不会的知识点,并做相关的习题。两轮之后,就不多构建出知识骨架了。

高三数学轮复习课件:同角三角函数的基本关系.pps

按我的经验,要多看书的目录,了解书的整体架构

对公式,概念要理解,能融会贯通

基础的东西全部掌握后,再去攻深题和难题

加(2)会用列举法计算一些随机所含的基本数及发生的概率.油哦。。。

福建省2022年高考数学平均分

其他省市平均分:

福建省2022年高考数学平均分37.8分。

4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;

从往年数学试题难度对比来看,2022年高考数学2. 指数函数难度确实比较大,难度就要呈现以下三大特点:

1、计算量较大,一些试题需要计算用的时间较多,导致很多考生时间根本不够用。

2、有一些超纲的试题。往年高考命题过程当中都会要求按照高考大纲进行练题,但是从现在来看很多高考试题都脱离了高考大纲。

3、试题出题角度超出考生日常学习范围,考生难以适应。

广东省2022年高考数学平均分数为38.6分。湖南省2022年高考数学平均分数为39.6分。湖北省2022年高考数学平均分数为40.3分。河北省2022年高考数学平均分数为46.6分。山东省2022年高考数学平均分数为43.6分。江苏省2022年高考数学平均分数为51.6分。

福建高考的科目、分数计算及报名方式:

1、考试科目

福建高考的科目包括语文、数学、外语和综合科目(理科考生为物理、化学、生物三门科目,文科考生为历史、地理、三门科目)。福建高考的考试内容主要基于普通高中的课程标准,重点测试学生的知识掌握、分析解决问题的能力以及综合运用知识的能力。

2、分数计算

福建高考采用总分制,即根据考生在各科目中获得的成绩进行加权计算,得出综合总分。福建省高考录取采用综合素质评价的方式,除了考试成绩外,还会参考学生的学业水平考试成绩、素质拓展活动成绩、面试成绩等多个因素进行综合评定,以确定录取分数线及录取名单。

3、报名方式

考生需要按照规定时间参加福建高考的报名,提交个人信息和相关证明材料。在备考阶段,考生应合理安排学习时间,复习考试所涉及的知识点,并进行模拟测试和真题练习,熟悉考试形式和时间管理。


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看