高考数学解法口诀_高考数学解法口诀是什么

高考数学有什么答题技巧?

(一)放松心态,保证精神充沛

高考数学解法口诀_高考数学解法口诀是什么高考数学解法口诀_高考数学解法口诀是什么


高考数学解法口诀_高考数学解法口诀是什么


在大考临考之前虽然心理紧张是一种正常的心理反应,但是有些考生甚至还会出现食欲减退、记忆力下降、头晕失眠等症状还是应该引起家长以及考生的注意,因为这是考生思想压力过大的表现。不通过减压,这些症状就不会消除,直接就会影响考生的复习备考的。所以,不管是家长还是考生,在大考即将来临的时候,家长以及考生如何给考生减压是很重要的,一般我(1)常见失分因素:们认为因注意以下几点:

1.正确认识自己的水平、实力,合理的期望。(这一点很难做到,但实际上很重要)

3.注意体育锻炼,每次十分钟,精神一整天。

3.注意休息,以及劳逸结合。

4.补充营养,以清淡为主,合理膳食,补足精神。

相信只有平和的心态,才会有高效的复习效率,才会有高昂的考试状态。

(二)掌握基础知识,重点内容加分

相对高考其他学科,数学学科命题呈现三大鲜明特点:,中考、高考数学试题考查异常全面,必修部分所学的章节几乎都会在试题中得到体现,未开垦的章节凤毛麟角。第二,中考、高考数学试题对重点章节的考查又异常偏重偏难,从不回避。第三,越来越注重基础知识与基本能力,也就是平时训练时所说的通法。以基础知识与基本能力命制的试题,其考查分值就可撑起整个数学考试满分的半壁江山。

所以,如果你的基础比较,那就多注重课本吧,把那些不讨熟悉的概念、公试、定理、公理以及他们的推导弄懂弄熟,在理解的基础之上,在尝试做一做和书本后面的习题难度相当的题目吧。相信这样,坚持到考试之前,你的能力会有所提升的。

如果你的基础比较好,那又该怎样营造数学的高分起点呢?其实,正是由于高考数学的不回避重点,所以从应试的角度来说,在保证一般出容易题的章节没有问题之后,考生应重点了解几类最主要的命题线索,把一些知识串起来,构成网络,也就是在常说的知识的交汇处下下功夫,这样把握命题者的考查重点,才能做到有备无患,让难题不再难。比如高中的《解析几何》部分:

曲线定义——轨迹方程——直线曲线综合——韦达定理——特殊结论。

(三)养成良好习惯,避免低级错误

这样的问题确实让考生犯难、但是一般很难克服。有人认为这样的失误都可以归结为是计算能力的问题。其实,谁也不能保证考试中所有的计算都不出现失误,所以因为计算所致的失误在高考数学中也可谓是偶然中的必然,只是或多或少的事。但是也有人认为,这是一种是否严谨的习惯的问题,只能靠平时的训练中潜意识的克服,养成习惯。

一般认为,需要从以下几个方面及早的加以注意:

首先要培养学生思考的习惯,不能仅依赖于老师的讲授。因为对于各知识之间的内在联系和涉及到的思想方法等,需要思考才能达到。

二是要培养学生认真练习,主要是练速度、练方法、练准确、练规范,精力集中、字迹清秀、作规范。

三是要培养学生认真归纳总结、反思,肯定自己的成功之处,帮助增强学习的信心。

四是培养学生高效听课、参与课堂教学。课堂是学生接受知识的主渠道,高效听课就是课堂上使自己的思维处于非常积极的状态,主动地对老师提出的问题进行思考、分析、综合和创造,善于自主探索与合作交流与老师共同完成一节课的学习,才能收获该收获的东西,才能在各种解题方法中选取其中简洁的思维路径,取得问题的解法,使能力培养落到实处。

五是培养学生逐步养成“一遍算对”的良好运算习惯;养成纠错和小结的学习习惯;不断研究学情,调整教学方法和策略,以获得的教学效果。

六是要对学生进行模拟限时的测试。每份模拟试卷要时易时难,以培养学生的心理调控、情绪调节和随机应变的能力。当然书面表达例:银行将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户. 为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为能力的规范性也要引起注意。

(四)多做计算练习,加强计算能力

(五)合理分配时间,先易后难

就是人们常说的“先易后难”,但是什么样的题目是容易的,什么样的是难的考生在考试的时候是很难把握的,所以一般小题2-3分钟一题,大题一般8-10分钟一题,把握住这个原则,试题从头到尾一遍做结束之后如果之前答题较为顺利,剩余时间较多的话,可仔细分析那些没有做出来的题目的题意,构思解题轮廓,准备充分后再开始解答。因为这些试题一般是选拔性的试题,所以一般避免不了有若干复杂计算,考生对此一定要有心理准备,如若思路清晰切忌半途而废。

如果之前题目完成后已无充足时间,考生也不要对这些试题轻言放弃,因为这种试题的问以及分类讨论情形中的特殊情形(评分标准中情形是赋分的)一般都较容易获得分值,考生不妨一试。也就是能多得一分,就多得一分,要有这个意识!

快速提高高考数学解题效率的技巧

2.填空题

同学们经常遇到考试数学时候,常常因为时 间不够,把握不好时间的使用程度而经常做不完数学题,遗憾的离开考场。下面是我整理的快速提高高考数学解题效率的技巧,欢迎大家阅读分享借鉴。

更多高考相关内容↓↓↓

最实用的高考语文复习技巧

2022高考励志金句100句

高考英语复习八大诀窍

2022高考复习攻略

1、熟悉基本的解题步骤和解题 方法 。

解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经 总结 出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的。

2、审题要认真仔细。

有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

3、认真做好归纳总结。

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达6.顺推法:到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

4、熟悉习题中所涉及的内容。

解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

5、学会画图。

画图是一个翻译的过程,,把解题时的 抽象思维 ,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

6、先易后难,逐步增加习题的难度。

人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

高考数学注意事项

首先是时间问题,高考数学选择填空控制在40-50分钟左右,选择题答完就要涂卡,填空题也要先填试卷上,注意问答一致;填时要看清序号,看一题填一题,当心空题,严防错位。

大题在答题的过程中切忌在答题纸上乱涂乱画,如写错了,就用单斜线划掉就可以了。作图时,用直尺和铅笔,先在试卷上构图解题,完成解题后,在纸上补上图形,要一次性成图,并用黑笔描清楚。尤其立几图形,虚实线分清

其二,解题时如果在前两道大题就遇到不会的情况,一定要沉着,要仔细再读一遍,找到其中你没有分析好的条件,或者隐含条件,遇到第二个问不会要回到个问的结论上,或者再回过头找一下之前所用的条件是否还能用上,不要只局限于第二个问所给的条件当中。如果实在做不出来也要保持冷静,继续往下做,不要在一道题目中过多的浪费时间,要学会取舍。

第三,如果觉得今年考试的题目难度过高,大题很难分析出步骤,那就要把握好选择题和填空题,所有大题的个问也都要尽力去做,切忌算错得数。做完之后要学会快速检查,如果得数过于繁琐很有可能是算错了,要学会快速验算,这也要求我们在答题时,草纸也要保持相对的整洁,这样方便我们对于错误进行快速查找。

的复习,重视公式、定理的记忆,强化错题中错误根源、理解正确方法、淡化计算。

数学考场答题技巧

1、“跳步”答题

有一些同学看到这个题自己会做,就放松警惕,跳步答题,导致不必要的失分。

建议:平时和考试都遵循“绝不跳步”的原则

2、数学符号书写不规范

数学符号是有严格规定的,比如属于符号(∈),正弦(sin),余弦(cos)

建议:想清楚自己要使用的符号,再下笔,平时注意对照课本,不放过细节

3、计算出错

比如数学的证明题,一个步骤错了下面的证明也得不了分。

建议:①数学计算要步步都认真②数学大题一定要留出检查时间③加强计算练习

快速提高高考数学解题效率的技巧相关 文章 :

★ 高中数学的快速提分的方法和技巧

★ 如何提高高中数学的教学效率

★ 高考数学考前冲刺方法与技巧

★ 高考数学快速提高成绩的十种方法

★ 高三数学学习规划

★ 高考数学的复习技巧指导

★ 做数学题的解题技巧方法高考

★ 高中数学的大题的解题的技巧详解 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高考数学选择题解题小妙招

导语:选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。下面就由我为大家分享10个高考数学选择题解题小妙招,希望能给大家带来帮助!

高考数学选择题解题小妙招

1.特值检验法:

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为

A. -5/4 B.-4/5 C.4/5 D. 2√5/5

解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值根据以往的经验,许多考生在数学考试中会因为计算能力较而吃亏,而计算能力是一种熟能生巧的能力。所以建议考生在复习备考的过程中,特别注意训练一下计算能力。怎样训练呢?考生可以找2-3套空白的用过的模拟考题目,拿过来重新再做一做,做的时候特别注意一下数学计算中常做的化简、解方程、解不等式等过程,力求速度与准确。这样既可以不打击信心,又有侧重的得到了训练。经验表明,这种方法效果不错。。题中没有给定A、B、C三点的具置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

2.极端性原则:

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:

由题目条件,作出符合题意的`图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:

通过题目条件进行推理,寻找规律,从而归纳出正确的方法。

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

A.5% B.10% C.15% D.20%

解析:设共有资金为α, 储户回扣率χ, 由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α

解出0.1≤χ≤0.15,故应选B.

7.逆推验证法(代入题干验证法):

将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

例:设M和N都是正整数N,映射f:M→把M中的元素n映射到N中的元素2n+n,则在映射f下,象37的原象是

A.3 B.4 C.5 D.6

8.正难则反法:

从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:

对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

例: 256-1可能被120和130之间的两个数所整除,这两个数是:

A.123,125 B.125,127 C.127,129 D.125,127

解析:初中的平方公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。

10.估值选择法:

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

总结:高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。例如:估值选择法、特值检验法、顺推法、数形结合法、特征分析法、逆推验证法等都是常用的解法. 解题时还应特别注意:选择题的四个选择支中有且一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。

高考数学命题点及答题技巧

★ 高考数学易错点整理及解题的方法技巧

【 #高考# 导语】学而不思则罔,在掌握知识点之后将其运用在解题中才是备考的好方法。高考备考需要一点点积累才能到达效果, 为您提供高考数学命题点及答题技巧,通过复习,能够巩固所学知识并灵活运用,考试时会更得心应手,快来看看吧!

高考数学各题型命题趋势

1.选择题

高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。

选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。

解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择支应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

从考试的角度来看,解选择题只要选对就行,至于用什么“策略”“手段”都是无关紧要的,所以人称可以“不择手段”。但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因。另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。

总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。这样不但可以迅速、准确地获取正确,还可以提高解题速度,为后续解题节省时间。

填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。

其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题。解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将表达得准确、完整。合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。

数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”“巧”“快”上下功夫。

3.解答题

解答题虽然灵活多变,但所考查数学知识、方法、基本数学思想是不变的,题目形式的设置是相对稳定的,突出特点是稳定,继续强化双基,考查能力,突出主干,考查全面。

解答题的解法灵活多样,入口宽,得部分分易,得满分难,几乎每题都有梯度,层层设关卡,能较好地区分考生的能力层次。运算与推理互相渗透,推理证明与计算紧密结合,运算能力强弱对解题的成败有很大影响。在考查逻辑推理能力时,常常与运算能力结合考查,推导与证明问题的结论,往往要通过具体的运算;在计算题中,也较多地掺进了逻辑推理的成分,边推理边计算.注重探究能力和创新能力的考查。探索性试题是考查这种能力的好素材,因此在试卷中占有重要的作用。

高考数学各题型答题策略

1.选择题——“不择手段”。解题策略如下:

(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的和,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

(3)挖掘隐含条件,注意易错易混点,例如中的空集、函数的定义域、应用性问题的限制条件等。

(4)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

(5)控制时间。一般不要超过40分钟,是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2.填空题——“直扑结果”。解题策略如下:

填空题和选择题有相似之处,有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

(1)作答的结果必须是数值准确,形式规范,例如形式的表示、函数表达式的完整等,结果稍有毛病便是零分;

(2)解答填空题要做到“正确、合理、迅速”。解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止之过急;全——要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

3.解答(3)能力不同,要求有变:题——“步步为营”

数学评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷经验的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。

解答题阅卷的评分原则一般是:问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。解题策略如下:

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论;

⑤计算能力失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

(2)何为“分段得分”:

有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答:如果遇到一个很困难的问题,将它们分解为一系列的步骤,先解决问题的一部分,能解决多少就解决多少,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,问想不出来,可把问作“已知”,先做第二问,这也是跳步解答。

③辅助解答:一道题目实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

针对基础较、以二本为目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!

针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。

针对志愿为大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。

高考数学考试答题技巧及方法 有哪些

表示:用各顶点字母,如五棱台

高中数学学习时要紧扣考纲考点,结合平时的解题方法和解题技巧做题,因为高中学习的科目多,时间紧张,所以我们没有太多的时间去刷题。

老师时常强调“举一反三,触类旁通”其实讲的就是思维,尤其是数学思维分有变通性思维和保守性思维。

我见过这样“勤奋”的学生。上数学课的时候,老师讲的每一句话他都在认真听,并且课堂上的每一份板书他都认认真真地抄到笔记本上去。老师布置了什么数学作业,他也会老老实实地做完,不会出现不交作业的情况,同样也不会出现自己再超额复习的情况。这些同学看起来真的很努力,但是 、、、、、、

这样他们同时也缺乏了思考的能力,只能跟着老师走,更何况有些孩子还跟不走,笔记做得再漂亮又怎样,不会用还不是白搭吗?这就是保守性思维所致。通常还会遇到这样的困难。在上课的时候能够听懂老师在讲什么,可是如果要他自己去做同样的一道题,他就必须要翻书翻笔记本才能做。考试的时候更,觉得这道题眼熟那道题也好像做过,刚要提笔去解答的时候才发现,这个公式想不起来,那个公式好像也不会用……

到了高三,孩子的数学成绩还是没有任何变化和提高,家长和孩子都着急了。于是这个时候又不知道是谁想出来的馊主意,觉得高考之前,数学实在是没办法,那就刷题吧,不会解题那就把思路全部都背下来好了,遇到类似的题就套用上去。但是大家都忘了,高考数学不会和以前做过的任何一道题重复,没一点举一反三的思维,光靠套用模板有什么用呢?想要学好数学,提高考试成绩,平时做题的是时候要养成以下习惯:

(1)善于观察

观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提

不论是初中数学还是高中数学中的任何一道数学题,都包含一定的数学条件和关系。要想解决它、、、、、

就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法

(2)善于联想

联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的

因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入

(3)善于将问题进行转化,转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?

概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。

在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系

掌握数学就意味着要善于解题。而当我们解题时遇到 —个新问题总想用熟悉的题型去“套”.这只是满足于解出来.只有对数学思想、数学方 法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法 的考察,特别是考查能力的试题.其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。

数学思想是数学的灵魂,它与数学基本方法常常在学习,掌握数学知识的同时获得。

可以说,“知识”是基础,方法是手段,思想是深3.函数图像(或方程曲线的对称性)化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是能力

高中的数学是比较难的,能够全部做完的估计是真学霸了,一般的学生只要把基础题及中等题做完就不多了,不要求全部做完,能把会的都作对分数也不会低。

高三数学知识点及公式总结大全

高三数学重要知识点精选总结1

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴与简易逻辑:的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念等数列等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

高三数学重要知识点精选总结3

立体几何初步

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示③抑制思维法:“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

13.恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分 老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及

(5)、高三数学教师教学工作总结

(6)、高三复习班数学班主任工作总结

高考数学复习的方法及技巧

在开始学习之前,制定一个明确、可执行的学习。这个应该包括每天的学习任务、每周的学习目标以及每个月的学习。通过这种方式,你可以有条不紊地安排自己的学习时间,避免浪费时间和精力。

给大家分享的是2024年高考数学中的重点知识和高效复习备考大纲及核心题型。抓紧拿去学习吧,让一轮复习更加高效。

围绕“★ 高考数学的核心考点及答题技巧方法高考一轮总复习”进行数学知识分享,分专题、包含重难点、记错点等等。知识形式以“考点梳理、题型归纳和对应练习题”为主。

高中数学经典解题技巧

快速提高高考数学解题效率的技巧

高中数学经典解题技巧

“三角变换与解三角形”的技巧性应用

湖南津市一中 周毅

【编者按】三角变换与解三角形是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下跟常用逻辑用语的经典解题技巧。

首先,解答三角变换与解三角形这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:

1. 会用向量的数量积推导出两角的余弦公式。

2. 能利用两角的余弦公式导出两角的正弦、正切公式。

3. 能利用两角的余弦公式导出两角各的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。

4. 能运用和与、二倍角的三角函数公式进行简单的恒等变换(包括导出积化和、和化积、半角公式,但对这三组公式不要求记忆)。

5. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

6. 能够运用正弦定理、余弦定理等知识和方法解决一些测量和几何计算有关的实际问题。

好了,搞清楚了三角变换与解三角形的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。

一、三角变换及求值

考情聚焦:1.利用两角和的三角函数公式进行三角变换、求值是高考必考内容。

2.该类问题出题背景选择面广,解答题中易出现与新知识的交汇题。

3.该类题目在选还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。择、填空、解答题中都有可能出现,属中、低档题。

解题技巧: 1.在涉及两角和与的三角函数公式的应用时,常用到如下变形

(1);

(2)角的变换;

(3)。

2.利用两角和与的三角函数公式可解决求值求角问题,常见有以下三种类型:

(1)“给角求值”,即在不查表的前提下,通过三角恒等变换求三角函数式的值;

(2)“给值求值”,即给出一些三角函数值,求与之有关的其他三角函数式的值;

(3)“给值求角”,即给出三角函数值,求符合条件的角。

例1:已知向量,且

(Ⅰ)求tanA的值; (Ⅱ)求函数R)的值域

解析:(Ⅰ)由题意得m·n=sinA-2cosA=0,

因为cosA≠0,所以tanA=2.

(Ⅱ)由(Ⅰ)知tanA=2得

因为xR,所以.当时,f(x)有值,

当sinx=-1时,f(x)有最小值-3

所以所求函数f(x)的值域是

二、正、余弦定理的应用

考情聚焦:1.利用正、余弦定理解决涉及三角形的问题,在近3年新课标高考中都有出现,预计将会成为今后高考的一个热点。

2.该类问题多数是以三角形或其他平面图形为背景,考查正、余弦定理及三角函数的化简与证明。

3.多以解答题的形式出现,有时也在选择、填空题中出现。

解题技巧:1.在三角形中考查三角函数式变换,是近几年高考的热点,它是在新的载体上进行的三角变换,因此要时刻注意它重要性:一是作为三角形问题,它必然要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,及时进行边角转化,有利于发现解决问题的思路;其二,它毕竟是三角形变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”,即“统一角、统一函数、统一结构”,是使问题获得解决的突破口。

2.在解三角形时,三角形内角的正弦值一定为正,但该角不一定是锐角,也可能为钝角(或直角),这往往造成有两解,应注意分类讨论,但三角形内角的余弦为正,该角一定为锐角,且有惟一解,因此,在解三角形中,若有求角问题,应尽量避免求正弦值。

高考数学解题技巧

对于一道具体的习题,解题时最重要的环节是审题。审题的步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

不知道你水平怎么样。

建议前面小题就是填空选择什么的先看题目★ 高考数学解题方法技巧总结,一眼觉得能做出来的就做,给自己一个限制,五分钟还没有思路就跳,十分钟算不出来也跳。十五分钟左右如果大题已经把会做的都做完了就回来看,如果大题会做的还没有做完建议直接做大题放弃小题,把会的分数都拿到。

一句话:该放的题目果断放掉,把能做的题目全部先拿到手!

祝你高考顺利~


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看