高中数学四种思想方法,分学数学思想和数学方法

高中数学四种思想方法

学习一门知识,究其核心,主要是学其思想和 方法 ,这是学习的精髓。学数学亦如此,分学数学思想和数学方法。下面是我为大家整理的关于高中数学四种思想方法,希望对您有所帮助。欢迎大家阅读参考学习!

高中数学四种思想方法,分学数学思想和数学方法高中数学四种思想方法,分学数学思想和数学方法


高中数学四种思想方法,分学数学思想和数学方法


高中数学四种思想方法,分学数学思想和数学方法


1高中数学四种思想方法

学习一门知识,究其核心,主要是学其思想和方法,这是学习的精髓。学数学亦如此,分学数学思想和数学方法。

2数形结合思想

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使 抽象思维 和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.

应用数形结合的思想,应注意以下数与形的转化:(1)的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.

3转化与化归思想

化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.

应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有: 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平 面相 互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化

4分类与整合思想

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类标准;③按所分类别进行讨论;④归纳小结、综合得出结论。分类讨论问题的关键是化整为零,通过局部讨论以降低难度。常见的类型: 由数学概念引起的的讨论,如实数、有理数、、点(直线、圆)与圆的位置关系等概念的分类讨论;

由数算引起的讨论,如不等式两边同乘一个正数还是负数的问题;由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

5函数方程思想

函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种 思维方式 ,是很重要的数学思想。函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,后解决问题,这就是函数思想;应用函数思想解题,确立变量之间的函数关系是一关键步骤

大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。

高中数学四种思想方法相关 文章 :

1. 高中数学思想与逻辑:11种数学思想方法总结与例题讲解

2. 高中数学思想方法

3. 高中数学学习的思想和法则

4. 高中数学四大学习方法

5. 高中数学规律和方法

6. 高中数学巧妙方法

7. 高中数学常考题型答题技巧与方法及顺口溜

8. 高考文科数学的思想方法有哪些

9. 高中数学21种解题方法与技巧

10. 高中数学大题的解题技巧及解题思想

四大数学思想是什么我要具体的

四大数学思想有转化思想、方程思想、数形结合思想、分类讨论思想,介绍如下:

1、转化思想:在解较复杂或条件较分散的几何问题时,往往需要通过某种转化手段,将生疏的问题转化成熟悉的问题;

2、方程思想:当几何中的证明题和计算题所求的未知量不易直接求出时,可根据题目所给的条件,结合图形,建立方程式或方程组通过解方程,使问题得以解决;

3、数形结合思想:在直角坐标系中的几何图形,往往可以借助函数的性质,将平面几何图形与函数图像有机地结合起来;

4、分类讨论思想:

数学四大思想八大方法是什么?

数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,别只是站在不同的角度看问题,通常混称为数学思想方法。数学四大思想八大方法是代数思想、数形结合、转化思想、对应思想方法、设思想方法、比较思想方法、符号化思想方法、极限思想方法。

数学思想方法

数形结合是一个数学思想方法,包含以形助数和以数辅形两个方面,其应用大致可以分为两种情形,或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质。

或者是借助于数的性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来地阐明曲线的几何性质。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

数学四大思想八大方法是什么?

数学四大思想:数形结合思想,转化思想,分类讨论思想,整体思想。八大数学方法:配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。

以上是学习中常用的思想方法。这些都是学习数学的过程中,经常运用的。不同学习阶段,数学思想方法的运用也不同,侧重点各有异。思想方法分类也不尽相同。

方法概述

函数的思想,就是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决的数学思想。

方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想。

高中数学有那些常用思想。

方程与函数思想 数形结合思想 特殊与一般思想 分类与整合思想 必然与或然思想 化归与转化思想 有限与无限思想

函数与方程、数形结合、化归转化、整体与分割、分类讨论、化归与转化、极限、特殊与一般、变量代换思想。

望采纳。

分类讨论;数形结合;函数与方程;等量代换

函数与方程、数形结合、化归转化、整体与分割

变量代换

数学四大思想八大方法是什么?

数学四大思想:数形结合思想,转化思想,分类讨论思想,整体思想。八大数学方法:配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。

以上是学习中常用的思想方法。这些都是学习数学的过程中,经常运用的。不同学习阶段,数学思想方法的运用也不同,侧重点各有异。思想方法分类也不尽相同。

分类讨论

分类讨论思想具有较高的逻辑性及很强的综合性,纵观近几年的高考数,不管是文科还是理科,同学们在解决后的数学综合问题时,基本上都需要分类讨论。

深度剖析了分类讨论思想,并结合典型例题同学们树立分类讨论思想,教会同学们如何灵活运用分类讨论思想解决数学问题。

如何掌握高中数学的四种思维方法

一、函数方程思想

函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想.

1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,后解决问题,这就是函数思想;

2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;

3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想.

二、数形结合思想

数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合.

1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短.

2.是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”.这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一.因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂.

3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质.

4.华罗庚先生曾指出:“数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.

5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题).而以形为手段的数形结合在高考客观题中体现.

6.我们要抓住以下几点数形结合的解题要领:

(1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;

(2) 对于研究函数、方程或不等式(值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;

(3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的.

三、分类讨论的数学思想

分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,终综合各类结果得到整个问题的解答.

1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:

(1)涉及的数学概念是分类讨论的;

(2)运用的数学定理、公式、或运算性质、法则是分类给出的;

(3)求解的数学问题的结论有多种情况或多种可能性;

(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;

(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的.

2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用.根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏,包含各种情况,同时要有利于问题研究.

四、化归与转化思想

所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题.

数学四大思想八大方法是什么?

数学四大思想八大方法是数形结合思想,转化思想,分类讨论思想,整体思想。配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。以上是学习中常用的思想方法。这些都是学习数学的过程中,经常运用的。不同学习阶段,数学思想方法的运用也不同,侧重点各有异,思想方法分类也不尽相同。

数学思想方法的含义

数学思想是对数学知识和方法本质的认识,是建立数学和用数学解决问题的指导思想,是解决数学问题的根本策略,它直接支配着数学的实践活动。数学方法是解决问题的手段和工具,是解决数学问题时的程序、途径,它是实施数学思想的技术手段。转化思想,提高学生分析解决问题的能力。数形结合的思想方法,提高学生的数形转化能力和迁移思维的能力。分类讨论的思想方法,培养学生全面观察事物、有条理的处理问题的能力。建模思想使学生更有思想,方法形成正确的数学态度。


版权声明:本文内容由互联网用户自发贡献。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

随便看看